Spelling suggestions: "subject:"El insouthern oscillation"" "subject:"El insouthern scillation""
1 |
ENSO prediction and predictability in an intermediate coupled modelFan, Yun January 1998 (has links)
No description available.
|
2 |
El Nino Southern Oscillation stability under global warmingFerrett, Samantha Joanne January 2015 (has links)
Typically, multi-model ensemble studies show mixed responses of El Nino Southern Oscillation (ENSO) under global warming, so it is currently unknown how, or even if, global warming will impact ENSO and its teleconnections. ENSO is governed by various ocean-atmosphere interactions in the equatorial Pacific, which provide either positive amplifying or negative damping feedbacks and are not always accurate in models. This results in uncertainty in projected ENSO responses. In a flux adjusted HadCM3 perturbed physics ensemble, the Bjerknes' stability index (BJ index), a measure of ENSO stability, has been used to analyse the strength of ENSO feedbacks and their response under the SRES A1B warming scenario with respect to mean climate conditions. Despite mean sea surface temperature biases being minimised by flux adjustment, the important dominant feedbacks, namely the latent heat flux feedback, shortwave flux feedback, the thermocline feedback and the zonal advective feedback are found to be too weak in the ensemble. Common model biases cause weak ocean-atmosphere interactions such as a weak response of ocean currents to wind stress anomalies, a weak thermocline slope response to wind stress anomalies and weak thermodynamic dampings. These biases are linked to overly strong zonal surface ocean currents and convective response biases. Under global warming, a large increase in thermodynamic damping, caused by increasing shortwave damping, is found. This increase is linked to a strong convective response and overrides other feedback responses, resulting in a weakening BJ index in contrast to increasing ENSO amplitude. Positive feedback responses are also found but counteract each other, so have relatively little impact on total ENSO stability. Results here show that common model biases, such as the cold tongue bias, are linked to persistent ENSO feedback biases pointing to areas of improvement in future models. Results also suggest that caution must be exercised when using the BJ index to assess ENSO, as the BJ index is not always representative of ENSO amplitude. This may be caused by non-linearities in ENSO feedbacks which are not accounted for by the linear approximations used in the BJ index, or by ENSO feedbacks not being directly comparable in magnitude, as assumed by the BJ index calculation.
|
3 |
Climate drives fire synchrony but local factors control fire regime change in northern MexicoYocom Kent, Larissa L., Fulé, Peter Z., Brown, Peter M., Cerano-Paredes, Julián, Cornejo-Oviedo, Eladio, Cortés Montaño, Citlali, Drury, Stacy A., Falk, Donald A., Meunier, Jed, Poulos, Helen M., Skinner, Carl N., Stephens, Scott L., Villanueva-Díaz, José 03 1900 (has links)
The occurrence of wildfire is influenced by a suite of factors ranging from "top-down" influences (e. g., climate) to "bottom-up" localized influences (e. g., ignitions, fuels, and land use). We carried out the first broad-scale assessment of wildland fire patterns in northern Mexico to assess the relative influence of top-down and bottom-up drivers of fire in a region where frequent fire regimes continued well into the 20th century. Using a network of 67 sites, we assessed (1) fire synchrony and the scales at which synchrony is evident, (2) climate drivers of fire, and (3) asynchrony in fire regime changes. We found high fire synchrony across northern Mexico between 1750 and 2008, with synchrony highest at distances < 400 km. Climate oscillations, especially El Nino-Southern Oscillation, were important drivers of fire synchrony. However, bottom-up factors modified fire occurrence at smaller spatial scales, with variable local influence on the timing of abrupt, unusually long fire-free periods starting between 1887 and 1979 CE. Thirty sites lacked these fire-free periods. In contrast to the neighboring southwestern United States, many ecosystems in northern Mexico maintain frequent fire regimes and intact fire-climate relationships that are useful in understanding climate influences on disturbance across scales of space and time.
|
4 |
Assessing the Impacts of Climate Change on Streamflow and Reservoir Operation in Central FloridaPanaou, Toni 09 January 2018 (has links)
Climate change is a global concern as it may affect many aspects of life, including water supply. A tool used to model climate change’s impacts is called a General Circulation Model (GCM). GCMs project future scenarios including temperature and precipitation, but these are designed at a coarse resolution and require downscaling for employment for regional hydrologic modeling. There is a vast amount of research on downscaling and bias-correcting GCMs data, but it is unknown whether these techniques alter precipitation signals embedded in these models or reproduce climate states that are viable for water resource planning and management. Using the Tampa, Florida region for the case study, the first part of the research investigated 1) whether GCM and the downscaled, bias-corrected data were able to replicate important historical climate states; and 2) if climate state and/or transition probabilities in raw GCMs were preserved or lost in translation in the corrected downscaled data. This has an important implication in understanding the limitations of bias-correction methods and shortcomings of future projection scenarios. Results showed that the GCM, and downscaled and bias-corrected data did a poor job in capturing historical climate states for wet or dry states as well as the variability in precipitation including some extremes associated with El Niño events. Additionally, the corrected products ended up creating different cycles compared to the original GCMs. Since the corrected products did not preserve GCMs historical transition probabilities, more than likely similar types of deviations will occur for “future” predictions and therefore another correction could be applied if desired to reproduce the degree of spatial persistence of atmospheric features and climatic states that are hydrologically important.
Furthermore, understanding the sustainability of water supply systems in a changing climate is required for undertaking adaptation measures. Many water suppliers employ GCMs to examine climate change’s effect on hydrologic variables such as precipitation, but little is known on the propagation of mismatch errors in downscaled products through cascade of hydrologic and systems models. The second study examined how deviations in downscaled GCMs precipitation propagated into streamflow and reservoir simulation models by using key performance metrics. Findings exhibited that simulations better reproduced the resilience metric, but failed to capture reliability, vulnerability and sustainability metrics. Discrepancies were attributed to multiple factors including variances in GCMs precipitation and streamflow cumulative distribution functions, and divergences in serial correlation and system memory.
Finally, the last study examined multiple models, emission scenarios and an ensemble to obtain a range of possible implications on reservation operations for time periods 2030-2053, 2054-2077 and 2077-2100 since the future emission trajectory is uncertain. Currently there are four Representative Concentration Pathways (RCPs) as defined by the IPCC’s fifth Assessment Report which provides time-dependent projections based on different forecasted greenhouse gas emission and land use changes. For this research Representative Concentration Pathways (RCPs) 4.0, 6.0 and 8.5 were examined. Scenarios were evaluated utilizing reliability, resilience, vulnerability and sustainability performance metrics and compared to a historical baseline. Findings exhibited that RCP 4.5, the lower end of emission scenario, improved reservoir reliability and resilience over time. Conversely, RCP 8.5, highest emissions, resulted in a steady decline of all metrics by 2100. Although vulnerability increased by 2100 for all emission scenarios, on average RCP 4.5 was less vulnerable. Investigation of permits and adjustments to capture extreme flows might be necessary to combat climate changes and precipitation inputs along with improvements to atmospheric emissions, which correlated with system recuperation with time.
|
5 |
Disturbance dynamics in west central British Columbia: multi-century relationships of fire, western spruce budworm outbreaks and climateHarvey, Jillian E. 01 May 2017 (has links)
Future climate changes will alter disturbance regimes worldwide with important implications for many ecological and social systems. In west central British Columbia, Canada, fire and insect disturbances have shaped the historic character of Douglas-fir (Pseudotsuga menziesii var. glauca Beissn. Franco) dominated forests. However, since AD 1900 fire suppression and other forest management practices have led to denser forests and conifer encroachment into grasslands. Considering climate changes in interior British Columbia are expected to result in warmer and drier conditions, understanding the influence of climate on forest disturbances is crucial for land managers tasked with both mitigating the effects of disturbance and promoting resilience in forest ecosystems. This research focused on developing multi-century, annually-resolved records of fire and western spruce budworm outbreaks to evaluate: the historic climate conditions related to these disturbances; the influence of grassland proximity on disturbance-climate relationships; and, whether western spruce budworm outbreaks were related to fire activity.
At the landscape scale, a detailed study in the Churn Creek Protected Area revealed spatially variable stand structure and fire-climate relationships at a low elevation forest-grassland ecotone over the interval AD 1600 to 1900. This finding suggests the site was characterized by fires of mixed-severity dominated by frequent, low-severity, fires related to positive antecedent moisture conditions punctuated by widespread fires of moderate to high severity related to intervals of persistent drought. At the regional scale, the influence of interannual climate variability and large-scale patterns of climate variability (e.g. El Nino Southern Oscillation) was evaluated using new and existing records of fire history and multiple climate pattern reconstructions. Regional fire activity was shown to be significantly related to interannual climate variability, and no consistent patterns between regional fire years and the individual phases or phase combinations of large-scale patterns of climate variability were detected. The findings suggest that the spatial expression of large-scale climate patterns translates into weak and undetectable terrestrial effects related to fire activity in this region. The influence of grassland proximity on disturbance history was investigated using site-level and regional tree-ring reconstructions of western spruce budworm outbreaks and fire activity based on four sites adjacent to grasslands and four sites not adjacent to grasslands between AD 1600 and 1900 (fire) and AD 1600 and 2009 (western spruce budworm). Fires affecting grassland proximal sites were more frequent than fires occurring in forests not adjacent to grasslands, and the character of western spruce budworm outbreaks was generally consistent among all sites. Fire activity was related to both warm, dry and cool, wet conditions in the fire year and/or year(s) preceding the fire depending on proximity to grasslands, suggesting climate conditions associated with both fine fuel growth and drying are key determinants for fire activity. The initiation of western spruce budworm outbreaks was significantly related to drought and this relationship was enhanced at sites adjacent to grasslands. At the site-level and regional scale, no consistent association was found between the initiation of western spruce budworm outbreaks and fire years indicating the historic interaction between these disturbances is weak or non-existent. / Graduate
|
6 |
Climatologia de bloqueios atmosféricos no hemisfério Sul: observações, simulações do clima do século XX e cenários futuros de mudanças climáticas / A Climatology of Southern Hemisphere Blockings: Observations, Simulations of the 20th Century and Future Climate Change Scenarios.Oliveira, Flavio Natal Mendes de 26 August 2011 (has links)
Este estudo discute uma climatologia de 59 anos (1949-2007) de bloqueios no Hemisfério Sul (SH) usando dados de altura geopotencial em 500-hPa das reanálises do National Center for Environmental Prediction / National Center for Atmospheric Research (NCEP-NCAR). A variabilidade espaço-temporal dos eventos de bloqueio e associações com o El Niño/Oscilação do Sul (ENOS) também foram examinadas. Adicionalmente, os bloqueios foram investigados em dois Modelos de Circulação Geral Acoplados Atmosfera-Oceano de clima (MCGAO) do Intergovernamental Painel for Climate Change (IPCC), o ECHAM5/MPI-OM e o MIROC 3.2. Dois cenários simulados foram analisados: O clima do século XX e o cenário de emissão A1B. Os episódios do ENOS foram identificados usando dois métodos. O primeiro foi o Índice Oceânico Mensal do Niño (ONI) do Climate Prediction Center (CPC-NCEP). O segundo método foi baseado em Funções Empíricas Ortogonais (EOF) e foi aplicado nos MCGAOs. Similarmente, também foi examinado a influencia combinada do ENOS e a Oscilação Antártica (AAO) na ocorrência e características dos bloqueios. O índice diário da AAO foi obtido pelo CPC-NCEP. Os índices convencionais de bloqueios detectam principalmente variações longitudinais. Este trabalho propõe um índice de bloqueio que detecta, além de variações longitudinais também as variações latitudinais dos bloqueios. Cinco setores relevantes de bloqueios foram examinados em detalhes: Indico Sudoeste (SB1), Pacífico Sudoeste (SB2), Pacífico Central (SB3), Pacífico Sudeste (SB4) e Atlântico Sudoeste (SB5). Além disso, foram investigados duas grandes regiões do Pacífico Sul: Pacífico Oeste e Pacífico Leste. Foi encontrado que a escala média típica dos eventos de bloqueio varia entre 1,5 e 2,5 dias. Além disso, a duração dos eventos depende da latitude, com eventos de maior duração observados em latitudes mais altas. Diferenças longitudinais estatisticamente significativas na freqüência do escoamento bloqueado foram observadas entre as fases Quente e Neutra do ENOS desde o outono a primavera. Episódios intensos da fase Quente do ENOS (isto é, moderados a fortes) tendem a modificar o local preferencial de bloqueio, mas não a freqüência. Por outro lado, os episódios fracos da fase Quente do ENOS estiveram associados relativamente com alta freqüência. Os Eventos de bloqueio durante o ENOS+ duram, em média, mais um dia relativamente aos episódios Neutros. Em contraste, a fase Fria do ENOS (ENOS-) caracterizou-se pela redução dos eventos de bloqueio sobre o setor do Pacífico Central, exceto durante os meses do verão austral. Entretanto, nenhuma diferença estatisticamente significativa foi detectada na duração dos eventos. Composições de anomalias de vento em 200-hPa indicam que o enfraquecimento (fortalecimento) do jato polar em torno de 60ºS durante a AAO negativa (positiva) em ambas as fases do ENOS tem uma importância significativa no aumento (redução) dos eventos de bloqueio. Um significativo aumento estatístico dos eventos sobre o setor do Pacífico Sudeste foi observado durante a AAO negativa em ambas as fases do ENOS. Ainda, um aumento (redução) dos eventos foi observado sobre a região do Pacífico Oeste na fase negativa (positiva) da AAO durante o ENOS-. Em contraste, durante o ENOS+ não houve diferenças estatisticamente significativas na distribuição longitudinal dos eventos separado de acordo com as fases opostas da AAO, embora haja um aumento (redução) dos eventos da região do Pacífico Oeste para o Pacífico Leste durante a fase negativa (positiva) da AAO. Os MCGAOs simularam corretamente a amplitude do ciclo anual observado. Também, ambos os MCGAOs simularam melhor a duração e o local preferencial do que freqüência. Nenhum MCGAO simulou adequadamente a freqüência durante a fase Neutra do ENOS. O ECHAM5/MPI-OM (rodada 2) mostra um erro sistemático que levam a uma superestimativa na freqüência de eventos sobre o Pacífico Leste durante as fases Neutra e Fria do ENOS. As diferenças entre as duas versões do MIROC 3.2 indicam que a alta resolução nos modelos melhora o desempenho em simular a freqüência de bloqueios. / This study discusses 59-yr climatology (1949-2007) of Southern Hemisphere (SH) blockings using daily 500-hPa geopotential height data from National Center for Environmental Prediction / National Center for Atmospheric Research (NCEP-NCAR reanalysis. The spatiotemporal variability of blocking events and associations with El Nino/Southern Oscillation (ENSO) are examined. Additionally, blockings were examined in two Intergovernmental Panel for Climate Change (IPCC) Coupled General Circulation Models (CGCM), ECHAM5/MPI-OM and MIROC 3.2. Two sets of simulations were examined: the climate of the 20th century and the A1B emission scenario. ENSO episodes were identified using two methods. The first method was the Monthly Oceanic Niño Index (ONI) from the Climate Prediction Center (CPC-NCEP). The second method was based on Empirical Orthogonal Function (EOF) and was applied to identify ENSO episodes in the CGCMs. Similarly, the combined influence of ENSO and the Antarctic Oscillation (AAO) on the occurrence and characteristics of blockings was also examined. The daily AAO index was obtained from CPC/NCEP. Most conventional blocking indices detect longitudinal variations of blockings. In this study we propose a new blocking index that detects longitudinal and latitudinal variations of blockings. The following relevant sectors of blocking occurrence were identified and examined in detail: Southeast Indian (SB1), Southwest Pacific (SB2), Central Pacific (SB3), Southeast Pacific (SB4) and Southwest Atlantic (SB5) oceans. In addition, we investigated two large regions of South Pacific: West Pacific and East Pacific. We found that the typical timescale of a blocking event is about ~1.5 2.5 days. Nonetheless, the duration of events depends on the latitude, with larger durations observed at higher latitudes. Statistically significant differences in the longitude of blockings are observed between Warm (ENSO+) and Neutral ENSO phases from the Austral fall to spring. Moderate to strong Warm ENSO episodes modulate the preferred locations of blockings but do not play a significant role for variations in their frequency. On the other hand, weak ENOS+ episodes were associated with relatively high frequency of blockings. Blocking events during ENSO+ last on average one more day compared to events that occur during Neutral episodes. In contrast, Cold (ENOS-) ENSO episodes are characterized by a decrease of blockings over the Central Pacific sector, except during the Austral summer months. However, no statistically significant differences are detected in the duration. Composites of 200-hPa zonal wind anomalies indicate that the weakening (strengthening) of the polar jet around 60oS during negative (positive) AAO phases in both ENSO phases plays a major role for the relative increase (decrease) of blocking events. A statistically significant increase of events over Southeast Pacific is observed during negative AAO phases in both ENSO phases. Moreover, an increase (decrease) of events is observed over West Pacific region when negative (positive) AAO phases occur during ENSO-. In contrast, during ENSO+ there is no statistically significant difference in the longitudinal distribution of events separated according to opposite AAO phases, although there is an increase (decrease) in the events from West Pacific region to East Pacific during negative (positive) AAO phase. The CGCMs investigated in this study correctly simulated the amplitude of observed annual cycle of geopotential height in the extratropics. Also, both CGCMs show a better performance in simulating the duration and preferred locations of blockings than their frequency. None of these CGCMs simulated well the frequency during Neutral ENSO phase. The ECHAM5/MPI-OM (run2) shows systematic biases in some regions. For instance, this model overestimates the frequency of blockings over East Pacific region during Cold and Neutral ENSO phases. The differences between the two versions of MIROC 3.2 indicate that the increase in resolution improves the performance of the model in simulating the frequency of blockings.
|
7 |
Analyse des facteurs de variabilité de la température dans la stratosphère.Cagnazzo, Chiara 22 June 2004 (has links) (PDF)
On sait aujourd'hui que les processus stratosphériques jouent un rôle important dans le système climatique et leur étude est donc de grande importance pour la communauté scientifique. Les changements à long terme observés dans la stratosphère comprennent l'augmentation des gaz à effet de serre, de la vapeur d'eau, la diminution de l'ozone et un refroidissement systématique de cette région de l'atmosphère pendant les deux dernières décennies (1980-2000). Cette recherche est dédiée à la quantification des changements à long terme de la structure thermique et dynamique de la stratosphère et à l'attribution des causes des changements observés, et en particulier l'effet de la diminution de l'ozone stratosphérique. Le travail a été mené pour les vingt dernières années, où des mesures globales de la stratosphère existent; les analyses effectuées ont été ensuite couplées avec des simulations GCM pour quantifier le rôle de la diminution de l'ozone sur les changements à long terme observés. Trois bases de données (températures mensuelles) résultant d'analyses de données satellitaires et/ou de radiosondages ont été considérées : la base TOVS/3I fournit une description de la basse stratosphère à haute résolution spatiale pour une période de 8 ans; la base FUB a une résolution spatiale moins bonne mais est disponible pour une période plus longue; enfin, la base SSU/MSU couvre les vingt dernières années et surtout la totalité de la stratosphère, mais avec une résolution verticale plus faible. Un modèle de régression linéaire multiparamétrique, qui permet de séparer l'effet de la variabilité naturelle de la tendance à long terme, a été utilisé. Dans un premier temps, une analyse détaillée de l'impact des différents facteurs de variabilité de la température stratosphérique été réalisée. Les forçages considérés sont: l'Oscillation Quasi-Biennale (QBO), l'ENSO, la variabilité de 11 ans associée au cycle solaire, et le mode de variabilité extratropicale connu sous le nom d'Oscillation Arctique (AO). Nous montrons tout d'abord que l'amplitude de la réponse de la température à ces forçages peut être du même ordre de grandeur que les tendances calculées. Ensuite, les tendances de la température sont décrites en fonction de l'altitude, de la latitude et de la saison; elles montrent un refroidissement général de la stratosphère, avec une amplitude maximale en moyenne globale dans la haute stratosphère de l'hémisphère nord (de l'ordre de 3 K/décennie); le refroidissement se réduit dans la moyenne stratosphère pour atteindre 1 K/décennie en moyenne globale dans la basse stratosphère (mais avec une structure fortement dépendante de la latitude). L'analyse des températures nous permet aussi de mettre en évidence, de façon indirecte, un affaiblissement de la circulation moyenne de la stratosphère. Pour étudier le rôle de la diminution d'ozone stratosphérique sur les champs dynamiques et thermiques, nous avons enfin considéré deux ensembles de simulations GCM de type « transitoire »; en entrée des simulations, le premier ensemble considère les conditions prévalant avant la diminution de l'ozone, alors que le deuxième inclut les tendances d'ozone observées en moyenne zonale et mensuelle (dite « simulation ozone »). Les tendances de température simulées ont été comparées entre elles. Les résultats indiquent que la diminution de l'ozone stratosphérique est responsable du refroidissement observé à hauteur de 60% dans la haute stratosphère et de 30% dans la basse stratosphère. Si le refroidissement de la haute et moyenne stratosphère est bien reproduit par les simulations ozone, dans la basse stratosphère il est sous-estimé, très probablement à cause de l'effet des tendances de vapeur d'eau, qui n'ont pas été prises en compte dans les simulations. Le refroidissement pendant le printemps Arctique dans la basse stratosphère est observé, mais non complètement reproduit. Enfin, les simulations ozone indiquent une modification dans l'activité des ondes qui se propagent dans la basse stratosphère, observée à travers l'étude de la composante verticale du flux d'Eliassen-Palm.
|
8 |
Investigation of techniques for improvement of seasonal streamflow forecasts in the Upper Rio GrandeLee, Song-Weon 01 November 2005 (has links)
The purpose of this dissertation is to develop and evaluate techniques for improvement of seasonal streamflow forecasts in the Upper Rio Grande (URG) basin in the U.S. Southwest. Three techniques are investigated. The first technique is an investigation of the effects of the El Ni??o/Southern Oscillation (ENSO) on temperature, precipitation, snow water equivalent (SWE), and the resulting streamflow at a monthly time scale, using data from 1952 to 1999 (WY). It was seen that the effects of ENSO on temperature and precipitation were confined to certain months, predominantly at the beginning and end of the winter season, and that the effect of these modulations of temperature and precipitation by ENSO can be seen in the magnitude and time variation of SWE and streamflow.
The second part is a comparison of the use for snowmelt-runoff modeling of the newly available snowcover product based on imagery from the satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS) with the long-time standard snowcover product from the National Hydrological Remote Sensing Center (NOHRSC). This comparison is made using the Snowmelt Runoff Model (SRM) in two watersheds located inside the URG basin. This comparison is important because the MODIS snowcover product could greatly improve the availability of snowcover information because of its high spatial (500m) and temporal (daily) resolutions and extensive (global) coverage. Based on the results of this comparison, the MODIS snowcover product gives comparable snowcover information compared to that from NOHRSC.
The final part is an investigation of streamflow forecasting using mass-balance models. Two watersheds used in the comparison of MODIS and NOHRSC snowcover products were again used. The parameters of the mass-balance models are obtained in two different ways and streamflow forecasts are made on January 1st, February 1st, March 1st and April 1st. The first means of parameter estimation is to use the parameter values from 1990 to 2001 SRM streamflow simulations and the second means is by optimization. The results of this investigation show that mass-balance models show potential to improve the long-term streamflow forecasts in snowmelt-dominated watersheds if dependable precipitation forecasts can be provided.
|
9 |
Hydro-climatic forecasting using sea surface temperaturesChen, Chia-Jeng 20 June 2012 (has links)
A key determinant of atmospheric circulation patterns and regional climatic conditions is sea surface temperature (SST). This has been the motivation for the development of various teleconnection methods aiming to forecast hydro-climatic variables. Among such methods are linear projections based on teleconnection gross indices (such as the ENSO, IOD, and NAO) or leading empirical orthogonal functions (EOFs). However, these methods deteriorate drastically if the predefined indices or EOFs cannot account for climatic variability in the region of interest. This study introduces a new hydro-climatic forecasting method that identifies SST predictors in the form of dipole structures. An SST dipole that mimics major teleconnection patterns is defined as a function of average SST anomalies over two oceanic areas of appropriate sizes and geographic locations. The screening process of SST-dipole predictors is based on an optimization algorithm that sifts through all possible dipole configurations (with progressively refined data resolutions) and identifies dipoles with the strongest teleconnection to the external hydro-climatic series. The strength of the teleconnection is measured by the Gerrity Skill Score. The significant dipoles are cross-validated and used to generate ensemble hydro-climatic forecasts. The dipole teleconnection method is applied to the forecasting of seasonal precipitation over the southeastern US and East Africa, and the forecasting of streamflow-related variables in the Yangtze and Congo Rivers. These studies show that the new method is indeed able to identify dipoles related to well-known patterns (e.g., ENSO and IOD) as well as to quantify more prominent predictor-predictand relationships at different lead times. Furthermore, the dipole method compares favorably with existing statistical forecasting schemes. An operational forecasting framework to support better water resources management through coupling with detailed hydrologic and water resources models is also demonstrated.
|
10 |
Evaluating the Distribution of Water Resources in Western Canada using a Synoptic Climatological ApproachNewton, Brandi Wreatha 24 December 2013 (has links)
The atmospheric drivers of winter and summer surface climate in western Canada are evaluated using a synoptic climatological approach. Winter snow accumulation provides the largest contribution to annual streamflow of the north-flowing Mackenzie and east-flowing Saskatchewan Rivers, while summer water availability is primarily a product of basin-wide precipitation and evapotranspiration. A catalogue of dominant synoptic types is produced for winter (Nov-Apr) and summer (May-Oct) using the method of Self-Organizing Maps. Water availability, quantified through high-resolution gridded temperature and precipitation data, associated with these synoptic types is then determined. The frequency of dominant types during positive/negative phases of the Southern Oscillation Index, Pacific Decadal Oscillation, and Arctic Oscillation reveal the atmospheric processes through which these teleconnections influence surface climate. Results from the winter analysis are more coherent than summer, with strong relationships found between synoptic types, teleconnections, and surface climate. Although not as strong, links between summer synoptic types and water availability also exist. Additionally, time-series analysis of synoptic type frequencies indicates a trend toward circulation patterns that produce warmer, drier winters as well as an earlier onset and extension of the summer season. This study increases our understanding of the atmospheric processes controlling the distribution of water resources in western Canada. / Graduate / 0388 / 0725 / 0368 / bwnewton@uvic.ca
|
Page generated in 0.1333 seconds