• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Intraseasonal Dynamical Evolution of the Northern Annular Mode

McDaniel, Brent 21 April 2005 (has links)
Recent observational and modeling studies indicate a robust dynamical coupling between the stratosphere and troposphere during boreal winter. This coupling occurs in association with the Northern Annular Mode (NAM), which itself accounts for a significant fraction of the variability of the extratropical circulation. While monthly NAM dynamics have been studied previously, the mechanisms that give rise to NAM variability on short intraseasonal timescale are still unclear. We perform regression analyses, case studies, and composites based on periods of dynamical growth/decay to investigate the roles of the different proposed mechanisms in driving the atmospheric variability observed in association with the NAM on short intraseasonal timescales. More specifically, lag-regression analyses are used to identify the mean canonical structures present during the evolution of a typical NAM event. Illustrative case studies of robust stratospheric NAM events but with different tropospheric signals are contrasted in order to identify the underlying dynamical reasons for the observed differences. Finally, composite analyses of NAM tendencies are performed to isolate the structural and dynamical evolution of NAM events. Zonal-mean and three-dimensional eddy-flux diagnoses are used to examine the role of eddy-mean flow interaction in driving the wind tendencies characteristic of the NAM. In particular, Plumb flux analyses are employed to quantify the contribution of regional stationary wave anomalies toward the zonal mean wind tendency field. Potential vorticity inversions are also used to determine the role of stratospheric anomalies in inducing tropospheric circulations. The case study analyses indicate that preexisting tropospheric PV anomalies can mask the downward penetration of an initial stratospheric NAM signal into the troposphere. PV inversions further suggest that a minimum requirement for a direct downward stratospheric influence is that the stratospheric NAM signal be robust in the lower stratosphere. The dynamical composites show a remarkable degree of reverse symmetry between the zonal-mean dynamical evolution of positive and negative NAM events. Anomalous Eliassen-Palm fluxes are observed in the troposphere and stratosphere, consistent with index of refraction considerations and an indirect downward influence of the stratosphere on the troposphere. The patterns of anomalous wave driving, primarily due to low-frequency planetary scale waves, provide the main forcing of the zonal mean wind tendency field. Regional wave activity fluxes indicate that the wave driving pattern represents the manifestation of planetary scale anomalies over the North Atlantic.
2

The Surface Climate Response to 11-Yr Solar Forcing during Northern Winter: Observational Analyses and Comparisons with GCM Simulations

Hood, Lon, Schimanke, Semjon, Spangehl, Thomas, Bal, Sourabh, Cubasch, Ulrich 10 1900 (has links)
The surface climate response to 11-yr solar forcing during northern winter is first reestimated by applying a multiple linear regression (MLR) statistical model to Hadley Centre sea level pressure (SLP) and sea surface temperature (SST) data over the 1880–2009 period. In addition to a significant positive SLP response in the North Pacific found in previous studies, a positive SST response is obtained across the midlatitude North Pacific. Negative but insignificant SLP responses are obtained in the Arctic. The derived SLP response at zero lag therefore resembles a positive phase of the Arctic Oscillation (AO). Evaluation of the SLP and SST responses as a function of phase lag indicates that the response evolves from a negative AO-like mode a few years before solar maximum to a positive AO-like mode at and following solar maximum. For comparison, a similar MLR analysis is applied to model SLP and SST data from a series of simulations using an atmosphere–ocean general circulation model with a well-resolved stratosphere. The simulations differed only in the assumed solar cycle variation of stratospheric ozone. It is found that the simulation that assumed an ozone variation estimated from satellite data produces solar SLP and SST responses that are most consistent with the observational results, especially during a selected centennial period. In particular, a positive SLP response anomaly is obtained in the northeastern Pacific and a corresponding positive SST response anomaly extends across the midlatitude North Pacific. The model response versus phase lag also evolves from a mainly negative AO-like response before solar maximum to a mainly positive AO response at and following solar maximum.
3

Klimavariabilität der Tropo- und Stratosphäre in einem globalen gekoppelten Atmosphäre-Ozean-Modell mit vereinfachter stratosphärischer Chemie / Tropo- and stratospheric climate variability in a global coupled atmosphere-ocean-model with simplified stratospheric chemistry

Brand, Sascha January 2007 (has links)
In dieser Arbeit wurde die Variabilität der Atmosphäre in einem neuen gekoppelten Klimamodell (ECHO-GiSP) untersucht, welches eine vereinfachte Stratosphärenchemie (bis 80 km Höhe) enthält. Es wurden 2 Simulationen über 150 Jahre durchgeführt. In einer der Simulationen wurde die atmosphärische Chemie modelliert, hatte aber keinen Einfluß auf die Dynamik des Klimamodelles. In der zweiten Simulation wurde hingegen die Wirkung der Chemie auf die Klimadynamik explizit berücksichtigt, die über die Strahlungsbilanz des Modelles erfolgt. Dies ist die erste Langzeitsimulation mit einem voll gekoppelten globalen Klimamodell mit interaktiver Chemie. Die Simulation mit rückgekoppelter Chemie zeigt eine Abschwächung des atmosphärischen Variabilitätsmusters der Arktischen Oszillation (AO). Zudem kommt es in der Troposphäre zu einer Reduzierung der mittleren Windgeschwindigkeiten der gemäßigten Breiten aufgrund verringerter Temperaturgegensätze zwischen den Tropen und den Polargebieten. Auch in der Stratosphäre ergibt sich eine Abschwächung und Erwärmung des Polarwirbels. Diese Auswirkungen der Kopplung zwischen der atmosphärischen Chemie und der Dynamik des Klimamodelles sind eine wichtige Erkenntnis, da in früheren Klimasimulationen die Variabilität der AO oft zu stark ausgeprägt war. In der Stratosphäre reduziert sich infolge des abgeschwächten Polarwirbels auch die großräumige Zirkulation zwischen den beiden Hemisphären der Erde. In der Troposphäre werden hingegen die allgemeine Zirkulation, und damit auch die subtropischen Strahlströme des Windes verstärkt. Zudem kommt es in den Tropen zu Temperaturänderungen durch stratosphärische Ozonschwankungen in Abhängigkeit von der AO. Allgemein verändert sich die Kopplung zwischen Troposphäre und Stratosphäre, einschließlich des durch die Anregung von langen atmosphärischen Wellen erfolgenden vertikalen Energieübertrages aus der Troposphäre in die Stratosphäre. / In this work the atmospheric variability in a new coupled climate model (ECHO-GiSP) was analyzed, which includes a simplified stratospheric chemistry (up to 80 km height). Two simulations of 150 years were performed. In one of those simulations the atmospheric chemistry was modeled without having any influence back on the model dynamics. In the second simulation the impact of the chemistry on climate dynamics, taking place via the models radiation balance, was explicitly recognized. This is the first long term simulation using a fully coupled global climate model with interactive chemistry. The simulation with interactive chemistry shows a weakening of the Arctic Oscillation (AO) pattern of atmospheric variability. At the same time there is a reduction of the mean wind speeds in middle latitudes in the troposphere, which is caused by weaker temperature gradients between the tropics and the polar regions. Also, in the stratosphere a weakening and warming of the polar vortex is obvious. These effects of the coupling between atmospheric chemistry and the dynamics of the climate model are an important result, since in earlier climate simulations the variability of the AO often was overestimated. Due to the weakened polar vortex in the stratosphere also the large scale interhemispheric mean circulation is reduced. On the other hand, the tropospheric meridional mean circulation, and thus also the subtropical jetstreams of the zonal wind are enhanced. Furthermore there are tropical temperature variations in the troposphere and lower stratosphere, which are induced by stratospheric ozone variations associated to the phase of the AO. Generally, the coupling between tropo- and stratosphere is changed, which includes the vertical energy and momentum transfer by ascending planetary waves from the troposphere to the stratosphere.
4

Weather patterns associated with green turtle hypothermic stunning events in St. Joseph Bay and Mosquito Lagoon, Florida

Roberts, Kelsey 01 January 2013 (has links)
January of 2010 brought record-breaking cold temperatures to Florida. Such freeze events can upset vulnerable populations of marine life and other species that rely on stable water temperatures. Sea turtles are one group of species that are particularly susceptible to abrupt drops in water temperature. When water temperatures drop below 10°C, a mass hypothermic stunning, or cold-stunning, event for sea turtles can be expected, with many debilitated turtles washing onshore with a very limited time window to be rehabilitated (Foley et al. 2007). The species of sea turtle that appears to cold-stun with the most frequency is the green turtle, especially juveniles. The green turtle represented the vast majority of marine turtles that were rescued during the 2010 cold-stun event. Therefore, accurate weather pattern recognition of marine cold snaps, or freezes, can alert sea turtle rescue groups and rehabilitation facilities in advance of any event, improving their readiness and response times, and ultimately preventing population declines. The proposed research fills this need by providing a qualitative analysis of select years for comparable atmospheric processes that could result in moderate to severe hypothermic stunning events. The 2010 event, along with other significant events, were examined using in situ air temperature, water temperature and wind data near two locations in Florida where hypothermic stunning events occurred: St. Joseph Bay and Mosquito Lagoon. These atmospheric parameters were represented graphically, depicting how each variable contributed to shaping an event. Cold stunning events were found to be primarily driven by frigid air temperatures and a subsequent decrease in water temperatures. Differences between the two event classifications, moderate and severe, are contingent upon the duration of the cold spell, not necessarily how quickly the water temperature dropped below the 10°C threshold value. Results suggest that repeated, quick exposure to cold air temperatures may influence the severity of a hypothermic stunning event. This research could be utilized in the formation of a forecasting model or strategy to efficiently alert the Florida Sea Turtle Stranding and Salvage Network (STSSN) to a potential sharp drop in water temperatures and, consequently, many debilitated sea turtles.
5

Greenland's Influence on Cyclone Activity

LI, Lin 29 January 2003 (has links)
No description available.
6

Impact of Rossby waves on ozone distribution and dynamics of the stratosphere and troposphere

Nikulin, Grigory January 2005 (has links)
<p>Several physical mechanisms concerning the impact of Rossby waves on ozone distribution and circulation in the stratosphere and troposphere are studied in the thesis.</p><p>Summertime total ozone variability over Middle Asia and Northern Scandinavia shows similar wave-like behaviour with typical periods of 10-20 days and amplitudes of 20-50 Dobson units. These variations are caused by eastward travelling Rossby waves in the lower stratosphere. The same mechanism plays the primary role in the formation of an intense low ozone episode over Scandinavia in August 2003. A strong anticyclone was formed in the troposphere over Europe as a part of a Rossby wave train. The anticyclone coincides with a displaced Artic pool of low-ozone air in the stratosphere aloft of the anticyclone. A combination of the two above-mentioned processes results in the total ozone minimum over Northern Europe for summer 2003.</p><p>Interannual variability of the atmospheric circulation and total ozone during winter is strongly controlled by the diabatic (Brewer-Dobson) circulation which is driven by upward propagating waves from the troposphere. In the Northern Hemisphere midlatitudes, wintertime total ozone shows antiphase behaviour with the Arctic Oscillation (AO) index on interannual and decadal time-scales. Weaker (stronger) wave activity leads to less (more) northward ozone transport and to a stronger (weaker) AO.</p><p>Rossby wave activity occurs as episodic wave events and this wave forcing is not uniform during winter. The November-December stratospheric eddy heat flux is strongly anticorrelated with the January-February eddy heat flux in the midlatitude stratosphere and troposphere. Weaker upward wave fluxes in early winter lead to stronger upward wave fluxes from the troposphere as well as to a stronger polar night jet during midwinter and vice versa. Hence upward wave activity fluxes in early winter define, to a considerable extent, the subsequent evolution of the midwinter circulation in the stratosphere and troposphere.</p>
7

Impact of Rossby waves on ozone distribution and dynamics of the stratosphere and troposphere

Nikulin, Grigory January 2005 (has links)
Several physical mechanisms concerning the impact of Rossby waves on ozone distribution and circulation in the stratosphere and troposphere are studied in the thesis. Summertime total ozone variability over Middle Asia and Northern Scandinavia shows similar wave-like behaviour with typical periods of 10-20 days and amplitudes of 20-50 Dobson units. These variations are caused by eastward travelling Rossby waves in the lower stratosphere. The same mechanism plays the primary role in the formation of an intense low ozone episode over Scandinavia in August 2003. A strong anticyclone was formed in the troposphere over Europe as a part of a Rossby wave train. The anticyclone coincides with a displaced Artic pool of low-ozone air in the stratosphere aloft of the anticyclone. A combination of the two above-mentioned processes results in the total ozone minimum over Northern Europe for summer 2003. Interannual variability of the atmospheric circulation and total ozone during winter is strongly controlled by the diabatic (Brewer-Dobson) circulation which is driven by upward propagating waves from the troposphere. In the Northern Hemisphere midlatitudes, wintertime total ozone shows antiphase behaviour with the Arctic Oscillation (AO) index on interannual and decadal time-scales. Weaker (stronger) wave activity leads to less (more) northward ozone transport and to a stronger (weaker) AO. Rossby wave activity occurs as episodic wave events and this wave forcing is not uniform during winter. The November-December stratospheric eddy heat flux is strongly anticorrelated with the January-February eddy heat flux in the midlatitude stratosphere and troposphere. Weaker upward wave fluxes in early winter lead to stronger upward wave fluxes from the troposphere as well as to a stronger polar night jet during midwinter and vice versa. Hence upward wave activity fluxes in early winter define, to a considerable extent, the subsequent evolution of the midwinter circulation in the stratosphere and troposphere.
8

Sea surface height: A versatile climate variable for investigations of decadal change

Thompson, Philip Robert 01 January 2012 (has links)
Decadal variations in climate are important, because the magnitude of sustained decadal change is often much larger than the often discussed background trends. Climate variability at interannual and longer periods is most often discussed in the context of climate modes defined by sea level pressure (SLP) and sea surface temperature (SST) patterns. However, SLP and SST are not capable descriptors of ocean dynamics. The approximately two decades of global sea surface height (SSH) measurements from satellite altimetry reveal substantial low-frequency redistributions of heat and salt in the ocean, which may or may not be related to defined climate modes. In addition, coastal sea level responds directly to synoptic variability in the atmosphere, providing long records of weather events in coastal areas. The unifying idea in the following analyses is the value and versatility of SSH from altimetry and sea level from tide gauges for investigations of decadal climate variability. Three applications of SSH and coastal sea level to the study of decadal change demonstrate the merits of using sea level for investigations of oceanic and atmospheric, episodic and continuous processes. The analyses concern a multidecadal change in storminess along the coast of the Southeast U.S., basin-scale coherent sea level variations in the western boundary of the North Atlantic, and the low-frequency response of the ocean to atmospheric forcing in the Northeast Pacific.
9

Evaluating the Distribution of Water Resources in Western Canada using a Synoptic Climatological Approach

Newton, Brandi Wreatha 24 December 2013 (has links)
The atmospheric drivers of winter and summer surface climate in western Canada are evaluated using a synoptic climatological approach. Winter snow accumulation provides the largest contribution to annual streamflow of the north-flowing Mackenzie and east-flowing Saskatchewan Rivers, while summer water availability is primarily a product of basin-wide precipitation and evapotranspiration. A catalogue of dominant synoptic types is produced for winter (Nov-Apr) and summer (May-Oct) using the method of Self-Organizing Maps. Water availability, quantified through high-resolution gridded temperature and precipitation data, associated with these synoptic types is then determined. The frequency of dominant types during positive/negative phases of the Southern Oscillation Index, Pacific Decadal Oscillation, and Arctic Oscillation reveal the atmospheric processes through which these teleconnections influence surface climate. Results from the winter analysis are more coherent than summer, with strong relationships found between synoptic types, teleconnections, and surface climate. Although not as strong, links between summer synoptic types and water availability also exist. Additionally, time-series analysis of synoptic type frequencies indicates a trend toward circulation patterns that produce warmer, drier winters as well as an earlier onset and extension of the summer season. This study increases our understanding of the atmospheric processes controlling the distribution of water resources in western Canada. / Graduate / 0388 / 0725 / 0368 / bwnewton@uvic.ca
10

Multi-Scale Climate Variability in Nova Scotia During the Past Century

McCartin, Chantal January 2017 (has links)
A study of the Nova Scotia surface air temperature over the last century (1900 to 2015) shows that internal variability on inter-annual, decadal and multi-decadal time scales can be partly explained by ocean-atmospheric climate modes, external and anthropogenic forcings. The Atlantic Multidecadal Oscillation (AMO) and Arctic Oscillation (AO) are shown to be the dominant climate drivers in Nova Scotia. The El Niño Southern Oscillation (ENSO) is also shown to be a dominant climate driver but only during the summer. Multivariate models were generated over the full time period using only natural ocean-atmospheric modes of variability but could not explain the rapid increase in the recent rate of warming (post-1980). The inclusion of anthropogenic greenhouse gas forcing to the models improved their predictive power annually and seasonally. The modelling results show that 11% of the annual variability in Nova Scotia results from natural forcings along with anthropogenic greenhouse gas forcing while seasonally up to 28% of the temperature variability can be explained by natural plus greenhouse gas forcings. The annual and seasonal low explained variance suggests that Nova Scotia is poorly modulated by climate indices, specifically during the winter, the time when relationships between ocean-atmospheric modes and the regional climate should be the strongest. It leads to believe that Nova Scotia is located in a transition zone where large-scale ocean-atmospheric modes of variability are transitioning from being positively correlated in a region to being negatively correlated in another region. The results of this study help to better understand how large-scale ocean-atmospheric modes of variability, external and anthropogenic greenhouse gas forcings affect Nova Scotia’s surface air temperatures and also provide insight into future potential variability under a changing climate.

Page generated in 0.4126 seconds