• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 5
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 63
  • 63
  • 13
  • 10
  • 10
  • 10
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Mineral, fluid, and elastic property quantification from well logs and core data in the Eagle Ford shale play : a comparative study

Kwabi, Essi 21 November 2013 (has links)
Organic shales have become one of the greatest sources of hydrocarbon thanks to novel production techniques such as hydraulic fracturing. A successful hydraulic fracturing job, however, is dependent on several rock properties such as mineralogy and elasticity. A reliable estimation of such properties is therefore necessary to determine ideal rocks for horizontal well placement. In this study, rock types within the Eagle Ford shale that would be suitable for hydraulic fracturing are identified through interpretations of available well logs and core data. A comparative study of petrophysical properties such as mineral content, kerogen type and maturity, porosity, and saturation in six wells is performed to characterize the Eagle Ford shale. Two of the wells studied are within the wet gas window of the shale while the remaining four are in the oil window. Based on the calculated petrophysical properties, rock typing was performed using k-means clustering. Two rock types (RT1 and RT2) were identified and their compositions compared in each well. Elastic properties for the various rock types identified were then estimated using the differential effective medium (DEM) theory and were validated through simulation of slowness logs. The final rock type assessment was then performed to identify ideal rocks for hydrofracturing. Results indicate that the Eagle Ford mineralogy varies greatly with depth and with geographic location relative to the San Marcos Arch, a geological arching prominence across the shale. Northeast of the arch, the Eagle Ford shale is clay-rich. Preferred rocks for hydrocarbon production, RT1, are characterized by volumetric concentrations of ~0.44 carbonate, ~0.09 kerogen, ~0.07 porosity, and ~0.42 clay; RT1 also exhibits high sonic velocities (> 3400 m/s and > 1500 m/s compressional and shear, respectively) and high apparent electrical resistivity (> 2 ohm-m). In the Southwest region, on the other hand, the Eagle Ford shale is mostly calcareous. Ideal rocks in the region, RT1, are rich in kerogen (~0.1) with carbonate content of ~0.56, ~0.1 porosity, ~0.19 clay content, and resistivity > 20 ohm-m. In both regions, porosity and pore aspect ratio displayed substantial effects on elastic properties. For example, over 80% decrease in Young’s modulus was quantified when pore aspect ratio approached zero; high pore aspect ratio is preferred for stiff rocks. Poisson’s ratio estimates were not always reliable therefore fracturability was assessed based on Young’s modulus estimates. The study shows that depth intervals exhibiting Young’s moduli above 18GPa and 21GPa in the Northeast and Southwest region, respectively, are suitable for hydrofracturing. / text
22

Hyperelastic modelling of rubber behaviour in finite element software

Wadham-Gagnon, Matthew. January 2006 (has links)
Experimental characterisation of rubber in uniaxial, equi-biaxial and planar tension under cyclic quasi-static loading shows strain-induced stress softening, hysteresis and unrecoverable strain. The objective of this work is to study the applications and limitations involved in predicting the behaviour of rubber with hyperelastic models. To assume a preconditioned perfectly elastic material, the data obtained from experiments must first be simplified. The data is then fitted to popular hyperelastic models in the finite element analysis (FEA) software ANSYS(TM). A single hyperelastic model (with given coefficients) is shown to only provide a good fit to a single characterisation test and level of preconditioning at the time. A two-iteration preconditioning method is developed using different hyperelastic models for a given material to approximate the softening effect of cyclic loading in a static FEA simulation. A biaxiality test is developed, providing information on the dominant mode of simple strain in the elements of a FE model. FEA simulations and experimental tests of a cantilevered rubber plate subjected to a bending load at its free end as well as a rubber guide lug subjected to a transverse deflection are presented and discussed. It is shown that using a single hyperelastic model is insufficient to predict the behaviour of these experiments in FEA simulations. The preconditioning iteration, when applied to these simulations, shows very good agreement with the experiments, both qualitatively and quantitatively. The biaxiality test provides insight on which characterisation test is the most appropriate for curve fitting hyperelastic models for a given analysis.
23

An experimental and numerical study on the effect of some properties of non-metallic materials on the ice adhesion level

Piles Moncholi, Eduardo January 2013 (has links)
The rise of the Environmentalism in every sector of the Industry has lead the aircraft and engine manufacturing companies to develop new generations of more environmentally friendly engines. The companies, encouraged to this purpose, are in a constant research for new manufacturing and production techniques, in order to improve their products, from the environmental point of view, by gaining efficiency in the manufacturing techniques and reduce the fuel consumption and emissions in-flight. Having in mind this scenario, the sponsor of this Project is interested in understanding how changing the materials of the blades, titanium alloys currently, for other lighter materials, such as composites, is going to have an effect in the overall gas turbine efficiency. In the particular case of this Project, it will be studied the influence of the Stiffness and coating Thickness of those non-metallic materials suitable to be employed as coatings on gas turbine fan blades, from the icing point of view. The work procedure will be based on a study of Linear Elastic Fracture Mechanics of bi-material junctions and will extrapolate the general problem to the ice-coatings case, by getting experimental data from tests carried out in an Icing Tunnel. It will be observed that the coating Stiffness has an influence on the Adhesion Level of ice to less stiff materials, if compared with the Adhesion Level of ice to metals. Besides, it will be described how a 0.5 millimetres thin polymeric coating placed over a metallic substrate is enough to reduce the Adhesion Level of ice, hiding any effect that the underneath materials might have on the Adhesion Level.
24

Sluoksniuotų kompozitinių medžiagų tamprumo rodiklių identifikavimas / Identification of Elastic Properties of Layered Composite Materials

Ragauskas, Paulius 19 November 2010 (has links)
Disertacijoje nagrinėjamos medžiagų tamprumo rodiklių identifikavimo tikslumo problemos. Pagrindinis tyrimo objektas yra įvairių medžiagų bandiniai, jų tamprumo rodikliai. Šis objektas yra svarbus įvairių medžiagų teoriniams tyrimams. Pagrindinis disertacijos tikslas yra sukurti efektyvią technologiją, leidžiančią pakankamu tikslumu surasti visus bandinio tamprumo rodiklius. Sukurtų algoritmų taikymo sritis yra medžiagų gamybos pramonė. Disertacijoje tiriamas siūlomos technologijos tikslumas ieškant įvairių medžiagų tamprumo rodiklių. Darbe sprendžiami keli pagrindiniai uždaviniai: optimizuojami bandinio geometriniai parametrai siekiant tikslesnių tamprumo rodiklių identifikavimo rezultatų; atpažįstamos bandinio modų formos ir reguliuojama jų vieta tikrinių reikšmių spektre siekiant sumažinti tikslo funkcijos iškraipymus; sukuriami pasiūlytų technologijų įgyvendinimo algoritmai ir bandymais patikrinamos jų galimybės. Pirmasis uždavinys suformuluotas atsižvelgiant į palyginti didelę kompozitinių medžiagų tamprumo rodiklių identifikavimo paklaidą. Antrasis siejasi su tikslo funkcijos iškraipymu atnaujinant matematinį medžiagos modelį spėjamais tamprumo rodikliais. Disertaciją sudaro keturi skyriai, rezultatų apibendrinimas, naudotos literatūros ir autoriaus publikacijų disertacijos tema sąrašai. Įvadiniame skyriuje aptariamas problemos aktualumas, tyrimo objektas, formuluojamas darbo tikslas bei uždaviniai, aprašoma tyrimų metodika, darbo mokslinis naujumas, darbo rezultatų... [toliau žr. visą tekstą] / In this thesis the problems of identification accuracy of elastic properties of materials are examined. The main object of study is samples of various materials and their elastic properties. This is an important subject of theoretical studies of various materials. The main thesis objective is to create an effective technology for precise identification of all the elastic characteristics of the sample. The de-veloped algorithms are to be applied in the material manufacturing industry. Thesis also aims at exploring accuracy and sensitivity of the identification of elastic properties of materials. The paper deals with a number of objectives: 1) to optimize the geometric parameters of the sample striving for more accurate identification results of elas-tic properties; 2) to identify mode shapes of sample and regulate their place in spectrum of eigenvalues in order to minimize the distortion of the objective function; 3) to create the implementation algorithms of proposed technologies and verify their capabilities experimentally. The first task is formulated taking into account the relatively high level of identification error of elastic properties of composite materials. The second objective relates to distortion of the objec-tive function in the process of updating the mathematical model with the pre-sumed elastic characteristics of material. The thesis is composed of four chapters, the summary of results, the list of literature and the list of author’s publications on the topic... [to full text]
25

An experimental and numerical study on the effect of some properties of non-metallic materials on the ice adhesion level

Piles Moncholi, Eduardo January 2013 (has links)
The rise of the Environmentalism in every sector of the Industry has lead the aircraft and engine manufacturing companies to develop new generations of more environmentally friendly engines. The companies, encouraged to this purpose, are in a constant research for new manufacturing and production techniques, in order to improve their products, from the environmental point of view, by gaining efficiency in the manufacturing techniques and reduce the fuel consumption and emissions in-flight. Having in mind this scenario, the sponsor of this Project is interested in understanding how changing the materials of the blades, titanium alloys currently, for other lighter materials, such as composites, is going to have an effect in the overall gas turbine efficiency. In the particular case of this Project, it will be studied the influence of the Stiffness and coating Thickness of those non-metallic materials suitable to be employed as coatings on gas turbine fan blades, from the icing point of view. The work procedure will be based on a study of Linear Elastic Fracture Mechanics of bi-material junctions and will extrapolate the general problem to the ice-coatings case, by getting experimental data from tests carried out in an Icing Tunnel. It will be observed that the coating Stiffness has an influence on the Adhesion Level of ice to less stiff materials, if compared with the Adhesion Level of ice to metals. Besides, it will be described how a 0.5 millimetres thin polymeric coating placed over a metallic substrate is enough to reduce the Adhesion Level of ice, hiding any effect that the underneath materials might have on the Adhesion Level.
26

複合応力下における木材(ヒノキ)の弾性特性に及ぼす載荷方式の影響

山崎, 真理子, YAMASAKI, Mariko, 佐々木, 康寿, SASAKI, Yasutoshi 12 1900 (has links)
No description available.
27

Investigation of pressure and saturation effects on elastic parameters: an integrated approach to improve time-lapse interpretation

Grochau, Marcos Hexsel January 2009 (has links)
Time-lapse seismic is a modern technology for monitoring production-induced changes in and around a hydrocarbon reservoir. Time-lapse (4D) seismic may help locate undrained areas, monitor pore fluid changes and identify reservoir compartmentalization. Despite several successful 4D projects, there are still many challenges related to time-lapse technology. Perhaps the most important are to perform quantitative time-lapse and to model and interpret time-lapse effects in thin layers. The former requires one to quantify saturation and pressure effects on rock elastic parameters. The latter requires an understanding of the combined response of time-lapse effects in thin layers and overcoming seismic vertical resolution limitation. / This thesis presents an integrated study of saturation and pressure effects on elastic properties. Despite the fact that Gassmann fluid substitution is standard practice to predict time-lapse saturation effects, its validity in the field environment rests upon a number of assumptions. The validity of Gassmann equations, ultimately, can only be tested in real geological environments. In this thesis I developed a workflow to test Gassmann fluid substitution by comparing saturated P-wave moduli computed from dry core measurements with those obtained from sonic and density logs. The workflow has been tested on a turbidite reservoir from the Campos Basin, offshore Brazil. The results show good statistical agreement between the P-wave elastic moduli computed from cores using the Gassmann equations and the corresponding moduli computed from log data. This confirms that all the assumptions of the Gassmann theory are adequate within the measurement error and natural variability of elastic properties. These results provide further justification for using the Gassmann theory to interpret time-lapse effects in this sandstone reservoir and in similar geological formations. / Pressure effects on elastic properties are usually obtained by laboratory measurements, which can be affected by core damage. I investigated the magnitude of this effect on compressional-wave velocities by comparing laboratory experiments and log measurements. I used Gassmann fluid substitution to obtain low-frequency saturated velocities from dry core measurements taken at reservoir pressure, thus mitigating the dispersion effects. The analysis is performed for an unusual densely cored well from which 43 cores were extracted over a 45 m thick turbidite reservoir. These computed velocities show very good agreement with the sonic-log measurements. This is encouraging because it implies that core damages that may occur while bringing the core samples to the surface are small and do not adversely affect the measurement of elastic properties on these core samples. Should core damage have affected our measurements, we would have expected a systematic difference between properties measured in situ and on the recovered. This confirms that, for this particular region, the effect of core damage on ultrasonic measurements is less than the measurement error. Consequently, stress sensitivity of elastic properties as obtained from ultrasonic measurements are adequate for quantitative interpretation of time-lapse seismic data. / In some circumstances, stress sensitivity may not be obtained by ultrasonic measurements. Cores may be affected by damage, bias in the plugging process and scale effects and therefore may not be representative of the in situ properties. Consequently it is desirable to obtain this dependence from an alternative method. This other approach ideally should provide the pressure - velocity dependence from an intact rock. Few methods can sample the in situ rock. Seismic, for instance, provides in situ information, but lacks vertical resolution. Well logs, on the other hand, can provide high vertical resolution information, but usually are not available before and after production changes. I propose a method to assess the in situ pressure - velocity dependence using well data. I apply this method to a reservoir made up of sandstone. I used 23 wells drilled and logged in different stages of development of a hydrocarbon field providing rock and fluid properties at different pressures. For each well logged at a specific time, pore pressure, velocity and porosity, among other properties, are known. Pore pressure is accessed from a Repeat Formation Tester (RFT). As a field depletes and new wells are drilled and logged, similar data sets related to different stages of depletion are available. I present an approach expanding Furre et al. (2009) study incorporating porosity and obtaining a three dimensional relationship with velocity and pressure. The idea is to help to capture rock property variability. / Quantitative time-lapse studies require precise knowledge of the response of rocks sampled by a seismic wave. Small-scale vertical changes in rock properties, such as those resulting from centimetre scale depositional layering, are usually undetectable in both seismic and standard borehole logs (Murphy et al., 1984). I present a methodology to assess rock properties by using X-ray computed tomography (CT) images along with laboratory velocity measurements and borehole logs. This methodology is applied to rocks extracted from around 2.8 km depth from offshore Brazil. This improved understanding of physical property variations may help to correlate stratigraphy between wells and to calibrate pressure effects on velocities, for seismic time-lapse studies. / Small scale intra-reservoir shales have a very different response from sands to fluid injection and depletion, and thus may have a strong effect on the equivalent properties of a heterogeneous sandstone reservoir. Since shales have very low permeability, an increase of pore pressure in the sand will cause an increase of confining pressure in the intra-reservoir shale. I present a methodology to compute the combined seismic response for depletion and injection scenarios as a function of net to gross (NTG or sand – shale fraction). This approach is appropriate for modelling time-lapse effects of thin layers of sandstones and shales in repeated seismic surveys when there is no time for pressure in shale and sand to equilibrate. I apply the developed methodology to analyse the sand - shale combined response to typical shale and sandstone stress sensitivities for an oil field located in Campos Basin, Brazil. For a typical NTG of 0.6, there is a difference of approximately 35% in reflection coefficient during reservoir depletion from the expected value if these shales are neglected. Consequently, not considering the small shales intra-reservoir may mislead quantitative 4D studies. / The results obtained in this research are aimed to quantify pressure and saturation effects on elastic properties. New methodologies and workflows have been proposed and tested using real data from South America (Campos Basin) datasets. The results of this study are expected to guide future time-lapse studies in this region. Further investigations using the proposed methodologies are necessary to verify their applicability in other regions.
28

Contribution aux méthodes de calcul des propriétés élastiques et de transport des milieux hétérogènes par la Transformée de Fourier / Contribution to the calculation methods of the elastic properties and transport of heterogeneous media by the Fourier Transform

Nguyen, Minh Tan 25 June 2018 (has links)
Ce travail propose de nouvelles contributions aux méthodes d’homogénéisation avec des applications aux composite, aux polycristaux et aux milieux poreux. Les propriétés effectives sont déterminées en résolvant un problème élémentaire sur la cellule unitaire que l’on peut reformuler avec l’équation de Lippmann-Schwinger (LS). Celle-ci est résolue en utilisant des développements en série de Neumann. Plusieurs approches sont alors proposées pour calculer les différents termes de la série, en utilisant des approches analytiques ou numériques. Ainsi, dans les deux premiers chapitres, on établit une famille d’équation LS pour la polarisation dans le contexte de la conductivité thermique et de l’élasticité. L’opérateur de cette équation est optimisé afin d’obtenir la meilleur convergence de la série de Neumann et par conséquent la meilleur estimation des propriétés effectives du composite. L’estimation proposée est basée à la fois sur une série tronquée et une estimation du résidu de la série de Neumann. Le travail présenté au chapitre 3 concerne le calcul des propriétés de transport de masse en milieu poreux. De manière classique, la loi de filtration est donnée par la loi de Darcy à l’échelle macroscopique. Dans ce travail, on calcule les termes correctifs à l’équation de Darcy lorsque la condition de stricte séparation des échelles n’est pas vérifiée. Ces termes correctifs sont calculés numériquement en résolvant une équation LS et en utilisant un schéma itératif basé sur la transformée de Fourier Rapide (TFR). Finalement, au chapitre 4, on détermine numériquement des bornes pour les propriétés élastiques des polycristaux en utilisant toujours les approches basées sur la TFR. L’approche proposée permet de tenir compte de la géométrie exacte de la cellule de Voronoi en utilisant les expressions exactes des fonctions formes pour des polygones et des polyèdres. La méthode est appliquée à des polycristaux constitués de monocristaux cubiques / This work proposed some contributions to the homogenization methods with applications to composites materials, polycristals and porous media. The effective properties are determined by solving the unit cell problem and the corresponding Lippmann-Schwinger (LS) equation. The latter is solved by means of Neumann series. Different approaches are considered to evaluate each terms of the series using analytic or numerical approaches. In the first two chapters, we formulate a general class of LS equations for the polarization in the case of conductivity and then elasticity. The operator of the latter is optimized to obtain the best convergence of the associated Neumann series and then of the better estimate of the effective of the composite. The estimate is based on both a truncated Neumann series and an approximation of its residual. In chapter 3, we deal with the mass transport properties of porous media. Classically, the filtration law is given by the Darcy equation at the macroscopic scale. In the present work we compute the corrective terms of the Darcy equation in the situation of no strict scale separation. These corrective terms are determined numerically by solving a LS equation with a fast Fourier Transform (FFT) based iterative scheme. Finally, in chapter 4, we derivative numerically some bounds for the elastic properties of polycristals still by means of an FFT iterative scheme. The approach uses an exact description of the voronoi-unit cell geometry by using the shape functions of polygons and polyhedrons. The method is applied to polycristals constituted of cubic single crystals
29

Métodos periódicos aplicados à determinação e análise de propriedades eletrônicas e elásticas em peroviskitas do tipo BaZrO.3 e BaTiO.3

Tonelli, Melissa Cristina [UNESP] 10 November 2006 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:25Z (GMT). No. of bitstreams: 0 Previous issue date: 2006-11-10Bitstream added on 2014-06-13T20:56:28Z : No. of bitstreams: 1 tonelli_mc_me_bauru.pdf: 656379 bytes, checksum: 088ba2edc1bcc1ff564c0ee2c5f19b27 (MD5) / Secretaria de Educação do Estado de São Paulo / Neste trabalho foram realizados cálculos mecânico-quânticos periódicos, efetuados em nível ab initio e utilizando-se a teoria do funcional da densidade, combinada com dois diferentes funcionais híbridos: B3LYP e B3PW para dois tipos de peroviskitas de grande interesse tecnológico: BaZrO.3 e BaTiO.3. A simulação de modelos periódicos foi empregada para fazer um estudo sistemático das propriedades estruturais, eletrônicas e mecânicas com a finalidade de validar a metodologia aplicada, assim como o modelo proposto que inclui o nível de teoria aplicado e o conjunto de funções de base que descrevem matematicamente através de funções os orbitais atômicos. Com o objetivo de confrontar os resultados obtidos a partir da implementação do modelo com outros estudos teóricos e experimentais, foram analisadas as densidades de estados, estrutura de bandas e diagrama de energia. Esse estudo teórico possibilitou a identificação dos átomos que mais contribuem para as bandas de energia e também as energias na região entre os limites superiores da banda de valência e inferiores da banda de condução. / We used quantum-mechanical calculations at the Density Functional Theory level, applying periodical models with the B3LYP and B3PW methods to study two systems of technological interest: BaZrO.3 e BaTiO.3. The simulation of periodical models was used to perform a systematical study of the structural, electronic and mechanical properties of those materials with the aim to validate the applied methodology, the proposed model, the level of theory and the base functions that described the atomic orbital mathematically. The objective was to compare the results obtained using the methodology of the present work with the others methodologies utilized in another experimental as theoretical studies. We analyzed the density of states and the band structures and compared with results of others methodologies of study. From the results obtained in the present work could identify whose atoms can make the major contribution to the energy bands near the Fermi level and close to conduction band.
30

Métodos periódicos aplicados à determinação e análise de propriedades eletrônicas e elásticas em peroviskitas do tipo BaZrO.3 e BaTiO.3 /

Tonelli, Melissa Cristina. January 2006 (has links)
Resumo: Neste trabalho foram realizados cálculos mecânico-quânticos periódicos, efetuados em nível ab initio e utilizando-se a teoria do funcional da densidade, combinada com dois diferentes funcionais híbridos: B3LYP e B3PW para dois tipos de peroviskitas de grande interesse tecnológico: BaZrO.3 e BaTiO.3. A simulação de modelos periódicos foi empregada para fazer um estudo sistemático das propriedades estruturais, eletrônicas e mecânicas com a finalidade de validar a metodologia aplicada, assim como o modelo proposto que inclui o nível de teoria aplicado e o conjunto de funções de base que descrevem matematicamente através de funções os orbitais atômicos. Com o objetivo de confrontar os resultados obtidos a partir da implementação do modelo com outros estudos teóricos e experimentais, foram analisadas as densidades de estados, estrutura de bandas e diagrama de energia. Esse estudo teórico possibilitou a identificação dos átomos que mais contribuem para as bandas de energia e também as energias na região entre os limites superiores da banda de valência e inferiores da banda de condução. / Abstract: We used quantum-mechanical calculations at the Density Functional Theory level, applying periodical models with the B3LYP and B3PW methods to study two systems of technological interest: BaZrO.3 e BaTiO.3. The simulation of periodical models was used to perform a systematical study of the structural, electronic and mechanical properties of those materials with the aim to validate the applied methodology, the proposed model, the level of theory and the base functions that described the atomic orbital mathematically. The objective was to compare the results obtained using the methodology of the present work with the others methodologies utilized in another experimental as theoretical studies. We analyzed the density of states and the band structures and compared with results of others methodologies of study. From the results obtained in the present work could identify whose atoms can make the major contribution to the energy bands near the Fermi level and close to conduction band. / Orientador: Aguinaldo Robinson de Souza / Coorientador: Julio Ricardo Sambrano / Banca: Sergio Ricardo de Lazaro / Banca: Ignez Caracelli / O Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, PosMat, tem caráter institucional e integra as atividades de pesquisa em materiais de diversos campi da Unesp / Mestre

Page generated in 0.1085 seconds