• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 98
  • 38
  • 17
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 316
  • 316
  • 53
  • 48
  • 39
  • 30
  • 30
  • 29
  • 28
  • 28
  • 27
  • 26
  • 24
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Elliptic problems of effective conductivity of nonlinear composites.

January 1994 (has links)
by Chu Kin Fung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1994. / Includes bibliographical references (leaves 73-75). / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Preliminaries --- p.6 / Chapter 2.1 --- Basic Notations --- p.6 / Chapter 2.2 --- Function Spaces --- p.8 / Chapter 3 --- Examples of Exactly Solvable Cases --- p.19 / Chapter 4 --- Existence and Uniqueness of Solutions --- p.29 / Chapter 5 --- Properties of Solutions --- p.41 / Chapter 6 --- Perturbation Expansion --- p.49
92

Electrical conductivity in the FeO·Fe2O3-Al2O3-SiO2 system.

Yen, Chung-An Felix January 1977 (has links)
Thesis. 1977. Ph.D.--Massachusetts Institute of Technology. Dept. of Materials Science and Engineering. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE. / Vita. / Includes bibliographical references. / Ph.D.
93

Electrostatic charge generation in hydrocarbon liquids

Hirsch, Peter Michael January 1979 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 1979. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE. / Bibliography: leaves 122-126. / by Peter Michael Hirsch. / M.S.
94

Electrical conductivity imaging of aquifers connected to watercourses : a thesis focused on the Murray Darling Basin, Australia.

Allen, David Andrew. January 2007 (has links)
Electrical imaging of groundwater that interacts with surface watercourses provides detail on the extent of intervention needed to accurately manage both resources. It is particularly important where one resource is saline or otherwise polluted, where spatial quantification of the interacting resources is critical to water use planning and where losses from surface waterways need to be minimized in order to transport water long distances. Geo-electric arrays or transient electromagnetic devices can be towed along watercourses to image electrical conductivity (EC) at multiple depths within and beneath those watercourses. It has been found that in such environments, EC is typically related primarily to groundwater salinity and secondarily to clay content. Submerged geo-electric arrays can detect detailed canal-bottom variations if correctly designed. Floating arrays pass obstacles easily and are good for surveying constricted rivers and canals. Transient electromagnetic devices detect saline features clearly but have inferior ability to detect fine changes just below beds of watercourses. All require that water depth be measured by sonar or pressure sensors for successful elimination of effects of the water layer on the data. The meandering paths of rivers and canals, combined with the sheer volume of data typically acquired in waterborne surveys, results in a geo-referencing dilemma that cannot be accommodated using either 2D imaging or 3D voxel imaging. Because of this, software was developed by the author which allows users to view vertical section images wrapped along meandering paths in 3D space so that they resemble ribbons. Geo-electric arrays suitable for simultaneous imaging of both shallow and deep strata need exponentially spread receiver electrodes and elongated transmitter electrodes. In order to design and facilitate such arrays, signed monopole notation for arrays with iv segmented elongated electrodes was developed. The new notation greatly simplified generalized geo-electric array equations and led to processing efficiency. It was used in the development of new array design software and automated inversion software including a new technique for stable inversion of datasets including data with values below noise level. The Allen Exponential Bipole (AXB) array configuration was defined as a collinear arrangement of 2 elongated transmitter electrodes followed by receiver electrodes spaced exponentially from the end of the second transmitter electrode. A method for constructing such geo-electric arrays for use in rivers and canals was developed and the resulting equipment was refined during the creation of an extensive set of EC imaging case studies distributed across canals and rivers of the Australian Murray- Darling Basin. Man made and natural variations in aquifers connected to those canals and rivers have been clearly and precisely identified in more than 1000 kilometres of EC imagery.
95

Eddy current losses in a conducting shaft rotating in a magnetic field

January 1946 (has links)
by N.H. Frank. / "November 20, 1946." / Army Signal Corps Contract No. W-36-039 sc-32037.
96

Conductivity of metallic surfaces at microwave frequencies

January 1947 (has links)
E. Maxwell. / Reprinted from Journal of applied physics, v. 18, no. 7, July, 1947. / Includes bibliographical references.
97

Electrical resistance of paper

Deutschman, Archie John, Jr. 01 January 1943 (has links)
No description available.
98

Conductance through Nanometer-scale Metal-to-Graphite Contacts

Ogbazghi, Asmerom Yemane 15 April 2005 (has links)
The metal/graphite interface is interesting due to the typically large disparity in the characteristics of the electronic structure (e.g. Fermi wavelength and Fermi energy) and dimensionality (3D in the metal versus quasi-2D in graphite). The goal of this work is to determine how the contact conductance to graphite depends on the metal contact area for nanometer-scale contacts. From this we deduce the effect of electronic screening in the graphite. Three different metals were chosen for this work: Solid Cu and Al, and liquid Ga. Liquid Ga provided a unique opportunity to reduce the effect of mechanical interactions to near zero, while Cu and Al were chosen for their different electronic structures. At the interface between the metal and graphite, the large Fermi wavevector of Al should allow phase matching of Al states to those in graphite, while the Cu Fermi surface lies inside of all available graphite wavevector states.
99

Derivatizations of Multi-Wall Carbon Nanotube for Doping of Conjugated Poly-(3-hexylthiophene) for Electric Conductivity and Photovoltaic Cells

Chen, Ying-ren 24 June 2010 (has links)
Due to entropy and Van der Waals¡¦ interaction, carbon nanotubes tend to aggregate degrading their excellent opto-electronic properties and limiting their applications. Chemical derivatizations were applied to the multi-wall carbon nanotube (MWCNT) by esterificating with different lengths of aliphatic pendants (COOC4H9, COOC10H21, and COOC18H37) to decrease the MWCNT aspect ratio to facilitate its dispersion, and to observe its percolation behavior. FTIR analysis revealed the more relevant absorption peaks of C-H at 2917 cm-1, 2846 cm-1 and C=O at 1733 cm-1 from the derivatization. H1-NMR showed that the aliphatic pendant functionalized MWCNT from the signals of OCH2 at £_ = 3.64 ppm, CH2 at £_ = 1.25 ppm, and CH3 at £_ = 0.88 ppm. Raman scattering indicated that esterification caused the ID/IG absorption peak area ratio to decrease. In applications, the electric conductivity was measured on thin-films of MWCNT:Poly-(3-hexylthiophene) (P3HT) as a function of nanotube content. Accompanied with nanotube doping concentration increased, the electric conductivity parallel to film surface (£m||) could range from an undoped value 1.4¡Ñ10-6 S/cm up to 1.2¡Ñ10-2 S/cm. The conductivity percolation threshold concentration decreased as the MWCNT aspect ratio increased due to the average distance between the nanotubes becoming sufficiently small for charges to hopping through P3HT. By incorporating [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM), bulk heterojunction photovoltaic (PV) cells of ITO/PEDOT:PSS/MWCNT:[PC61BM:P3HT]/LiF/Al were fabricated. By varying the ratio of MWCNT to the PC61BM:P3HT (0.8:1) mixtures, the PV cells showed the maximum power conversion efficiency (£bp) close to 4 % with MWCNT-COOC4H9 at a doping concentration of 0.01 wt. %.
100

Theory of electron localization in disordered systems /

Arnold, Wolfram Till, January 2000 (has links)
Thesis (Ph. D.)--University of Oregon, 2000. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 199-204). Also available for download via the World Wide Web; free to UO users.

Page generated in 0.1101 seconds