• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Organic Photovoltaic Cells of Fully Conjugated Poly-(3-hexylthiophene) and Heterocyclic Aromatic PCPDTBTCopolymer Doped with Derivatized Fullerene

Lin, Tzu-chin 20 January 2011 (has links)
Fully conjugated coil-like polymer poly-(3-hexylthiophene) (P3HT) and aromatic heterocyclic copolymer poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta-[2,1-b;3,4-b¡¬]- dithiophene)-alt-4,7-(2,1,3-benzothiadiazole] (PCPDTBT) were applied separately as donors mixed with derivatized carbon fullerence [6,6]-phenyl C61-butyric acid methyl ester (PC61BM) serving as an acceptor. Single layer photovoltaic cells of ITO/ PEDOT:PSS/polymer:PC61BM/LiF/Al were fabricated to study photovoltaic effect of layer thickness, thermal annealing, composition variance, and processing solvent. At a P3HT:PC61BM weight ratio of 1:1, the thermally annealed photovoltaic cells achieved a conversion efficiency (£bp) of 4.58 % from enhanced contact between cathode and active layer. At a PCPDTBT:PC61BM weight ratio of 1:1.25, the best £bp was 2.62 %. The efficiency difference was due to PCPDTBT:PC61BM was highly phase separated preventing the formation of conductive interpenetrating network to facilitate charge transport. Its device fill factor was limited to be 38 %. Under the same spin coating speed, solutions of different PC61BM concentration would yield different spun film thickness leading to large change in conversion efficiency (£bp). At a constant active layer thickness, £bp tended to be stable indicating that £bp was affected more by the layer thickness than by PC61BM concentration. A layer of mixing P3HT: PCPDTBT: PC61BM would expand the absorption range from visible to near infrared. However, an increased PCPDTBT concentration did not help £bp. This is due to charge transport imbalance between P3HT and PCPDTBT leading to an £bp less than those of individual blends with PC61BM. Device £bp was consistently higher for using a solvent with a boiling point higher than polymer glass transition temperature (Tg).
2

Derivatizations of Multi-Wall Carbon Nanotube for Doping of Conjugated Poly-(3-hexylthiophene) for Electric Conductivity and Photovoltaic Cells

Chen, Ying-ren 24 June 2010 (has links)
Due to entropy and Van der Waals¡¦ interaction, carbon nanotubes tend to aggregate degrading their excellent opto-electronic properties and limiting their applications. Chemical derivatizations were applied to the multi-wall carbon nanotube (MWCNT) by esterificating with different lengths of aliphatic pendants (COOC4H9, COOC10H21, and COOC18H37) to decrease the MWCNT aspect ratio to facilitate its dispersion, and to observe its percolation behavior. FTIR analysis revealed the more relevant absorption peaks of C-H at 2917 cm-1, 2846 cm-1 and C=O at 1733 cm-1 from the derivatization. H1-NMR showed that the aliphatic pendant functionalized MWCNT from the signals of OCH2 at £_ = 3.64 ppm, CH2 at £_ = 1.25 ppm, and CH3 at £_ = 0.88 ppm. Raman scattering indicated that esterification caused the ID/IG absorption peak area ratio to decrease. In applications, the electric conductivity was measured on thin-films of MWCNT:Poly-(3-hexylthiophene) (P3HT) as a function of nanotube content. Accompanied with nanotube doping concentration increased, the electric conductivity parallel to film surface (£m||) could range from an undoped value 1.4¡Ñ10-6 S/cm up to 1.2¡Ñ10-2 S/cm. The conductivity percolation threshold concentration decreased as the MWCNT aspect ratio increased due to the average distance between the nanotubes becoming sufficiently small for charges to hopping through P3HT. By incorporating [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM), bulk heterojunction photovoltaic (PV) cells of ITO/PEDOT:PSS/MWCNT:[PC61BM:P3HT]/LiF/Al were fabricated. By varying the ratio of MWCNT to the PC61BM:P3HT (0.8:1) mixtures, the PV cells showed the maximum power conversion efficiency (£bp) close to 4 % with MWCNT-COOC4H9 at a doping concentration of 0.01 wt. %.
3

Organic Photovoltaic Cells of Fully Conjugated Coil-like Poly-(3-hexylthiophene) and Rod-like Heterocyclic Aromatic Polymer Doped with Nano-carbon Particles

Wang, Lian-bing 26 July 2009 (has links)
Fully conjugated heterocyclic aromatic rod-like polymer poly-p-phenylene- benzobisoxazole (PBO) and coil-like poly-(3-hexylthiophene) (P3HT) were applied as opto-electronically active layer. The two polymers mixed with nano-carbon particles, having excellent optical absorption and electric conductivity, of [6,6]-phenyl C61-butyric acid methyl ester (PCBM) or esterified multi-wall carbon nano-tube (MWNT-COOC10H21) as well as a hole transporting layer of PEDOT:PSS. Photovoltaic (PV) cells of indium-tin-oxide (ITO)/PEDOT:PSS/nano-carbon particle:fully conjugated polymer/Al were fabricated for optical and electrical characterizations. Tri-layered structure of ITO/PEDOT:PSS/PBO/PCBM/Al produced a straight current-voltage relation showing no PV effects. Upon changing the active layer into PCBM doped P3HT layer (PCBM:P3HT), it produced good PV effects suggesting that the doped layer had a penetrating network to facilitate the PV effects. When PCBM or MWNT-COOC10H21 was doped into P3HT, the device PV effects were increased significantly with nano-carbon particle concentration. The direct-current electric conductivity parallel to the film surface (£m¡ü)was increased with the nano-carbon particle concentration. By changing the thickness of hole transporting PEDOT:PSS and of opto-electronically active layers, it was found that when the PEDOT:PSS layer was decreased from 90 nm to 32 nm, there was a slight increase of PV cell efficiency. The active layer of PCBM:P3HT with a thickness of 99 nm had the best optical absorption and charge transport leading to an increase of PV cell efficiency.
4

Charge transport in organic multi-layer devices under electric and optical fields

Park, June Hyoung 17 July 2007 (has links)
No description available.
5

Aplicações de técnicas de impressão à dispositivos eletrônicos orgânicos / Applications of printing techniques for organic electronic devices

Rebello, Pedro Henrique Pereira 27 January 2014 (has links)
O trabalho desta dissertação versou sobre avanços em tecnologias de eletrônica impressa de baixo custo. Em particular, aplicamos as técnicas de impressão por serigrafia e por jato de tinta para confeccionar dispositivos eletrônicos e optoeletrônicos. O primeiro dispositivo construído foi resistências impressas por jato de tinta tendo como matérias primas o poli(3,4-etileno dióxido tiofeno) com sulfonato de poliestireno (PEDOT:PSS) e nanopartículas de prata sobre substratos de vidro. Os valores das resistências foram analisados em se variando parâmetros de impressão. Como segundo dispositivo, imprimimos pela técnica de serigrafia sobre vidro e kapton, antenas de cartões de RFIDs (Radio-Frequency Identifications), também com os dois materiais: tinta de prata e PEDOT:PSS. Os RFIDs foram projetados para operar em frequências entre 860 MHz e 960 MHz. A antena de PEDOT:PSS mostrou alcance de 0,45 m, enquanto que a de tinta prata teve alcance de 1,6 m em 860 MHz e de 4 m em 960 MHz. Fabricamos também células eletroquímicas emissoras de luz (Organic Light Emitting Electrochemical Cells - OLECs), no qual substituímos o eletrodo transparente de óxido de índio (ITO), por um feito de PEDOT:PSS, aplicado por serigrafia sobre vidro. A camada ativa da célula luminescente foi feita por uma mistura de óxido de polietileno complexado com sal de lítio e um polímero luminescente derivado de polifluoreno que emite no verde. As curvas características de corrente e luminância em função da voltagem externa aplicada mostrou o bom desempenho das células fabricadas. Finalmente, produzimos células fotovoltaicas orgânicas, em que o eletrodo transparente, também de PEDOT:PSS, foi depositado por serigrafia sobre vidro. A camada ativa nesse caso foi um sistema bifásico feito de poli(3hexiltiofeno) (P3HT) e um éster, o [6,6]-fenil-C61-ácido metil-butírico (PCBM). Esse dispositivo apresentou um Fator de Preenchimento de 0,47 e uma eficiência externa de aproximadamente 2%. / The work developed along this thesis presents advances in printed electronic technologies of low cost. In particular we applied printable serigraphic and Inkjet technologies to produce electronic and optoelectronic devices. First, we produced resistances having poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) and silver paint as active materials, using an Inkjet printer on glass substrate. We made studies of the resistance performance varying some printed parameters. Then, by serigraphy screen printing was printed, on substrates of kapton and glass, an antenna in an Radio-Frequency Identification card (RFID), also from PEDOT:PSS and from silver paint. This RFID was projected to operate in a frequency range from approximately 860 MHz to 960 MHz. The antenna made of PEDOT:PSS operated in a distance of 0.45 m, while that of silver varied from 1.6 m at 860 MHz to 4 m at 960 MHz. In an Organic Light Emitting Electrochemical Cell (OLEC) we applied one of the electrodes, a PEDOT:PSS layer, as a transparent electrode by serigraphy on glass substrate for made to replace of ITO. The active layer was a mixture of a poly(ethylene oxide) complexed with lithium salt and a derivative of polyfluorene that is a green emitter. The characteristic curves of current and luminance against the applied external voltage assured us the good performance of the device. Similar result was obtained with the performance of an organic photovoltaic (OPV), in which the active layer was a biphasic system made by poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), in which the transparent electrode (PEDOT:PSS) was also printed by serigraphy on glass substrate. In this device we obtained a Fill Factor of 0.47 and an external efficiency of almost 2%.
6

Aplicações de técnicas de impressão à dispositivos eletrônicos orgânicos / Applications of printing techniques for organic electronic devices

Pedro Henrique Pereira Rebello 27 January 2014 (has links)
O trabalho desta dissertação versou sobre avanços em tecnologias de eletrônica impressa de baixo custo. Em particular, aplicamos as técnicas de impressão por serigrafia e por jato de tinta para confeccionar dispositivos eletrônicos e optoeletrônicos. O primeiro dispositivo construído foi resistências impressas por jato de tinta tendo como matérias primas o poli(3,4-etileno dióxido tiofeno) com sulfonato de poliestireno (PEDOT:PSS) e nanopartículas de prata sobre substratos de vidro. Os valores das resistências foram analisados em se variando parâmetros de impressão. Como segundo dispositivo, imprimimos pela técnica de serigrafia sobre vidro e kapton, antenas de cartões de RFIDs (Radio-Frequency Identifications), também com os dois materiais: tinta de prata e PEDOT:PSS. Os RFIDs foram projetados para operar em frequências entre 860 MHz e 960 MHz. A antena de PEDOT:PSS mostrou alcance de 0,45 m, enquanto que a de tinta prata teve alcance de 1,6 m em 860 MHz e de 4 m em 960 MHz. Fabricamos também células eletroquímicas emissoras de luz (Organic Light Emitting Electrochemical Cells - OLECs), no qual substituímos o eletrodo transparente de óxido de índio (ITO), por um feito de PEDOT:PSS, aplicado por serigrafia sobre vidro. A camada ativa da célula luminescente foi feita por uma mistura de óxido de polietileno complexado com sal de lítio e um polímero luminescente derivado de polifluoreno que emite no verde. As curvas características de corrente e luminância em função da voltagem externa aplicada mostrou o bom desempenho das células fabricadas. Finalmente, produzimos células fotovoltaicas orgânicas, em que o eletrodo transparente, também de PEDOT:PSS, foi depositado por serigrafia sobre vidro. A camada ativa nesse caso foi um sistema bifásico feito de poli(3hexiltiofeno) (P3HT) e um éster, o [6,6]-fenil-C61-ácido metil-butírico (PCBM). Esse dispositivo apresentou um Fator de Preenchimento de 0,47 e uma eficiência externa de aproximadamente 2%. / The work developed along this thesis presents advances in printed electronic technologies of low cost. In particular we applied printable serigraphic and Inkjet technologies to produce electronic and optoelectronic devices. First, we produced resistances having poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) and silver paint as active materials, using an Inkjet printer on glass substrate. We made studies of the resistance performance varying some printed parameters. Then, by serigraphy screen printing was printed, on substrates of kapton and glass, an antenna in an Radio-Frequency Identification card (RFID), also from PEDOT:PSS and from silver paint. This RFID was projected to operate in a frequency range from approximately 860 MHz to 960 MHz. The antenna made of PEDOT:PSS operated in a distance of 0.45 m, while that of silver varied from 1.6 m at 860 MHz to 4 m at 960 MHz. In an Organic Light Emitting Electrochemical Cell (OLEC) we applied one of the electrodes, a PEDOT:PSS layer, as a transparent electrode by serigraphy on glass substrate for made to replace of ITO. The active layer was a mixture of a poly(ethylene oxide) complexed with lithium salt and a derivative of polyfluorene that is a green emitter. The characteristic curves of current and luminance against the applied external voltage assured us the good performance of the device. Similar result was obtained with the performance of an organic photovoltaic (OPV), in which the active layer was a biphasic system made by poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), in which the transparent electrode (PEDOT:PSS) was also printed by serigraphy on glass substrate. In this device we obtained a Fill Factor of 0.47 and an external efficiency of almost 2%.

Page generated in 0.0655 seconds