• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 7
  • 6
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Organic Photovoltaic Cells of Fully Conjugated Poly-(3-hexylthiophene) and Heterocyclic Aromatic PCPDTBTCopolymer Doped with Derivatized Fullerene

Lin, Tzu-chin 20 January 2011 (has links)
Fully conjugated coil-like polymer poly-(3-hexylthiophene) (P3HT) and aromatic heterocyclic copolymer poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta-[2,1-b;3,4-b¡¬]- dithiophene)-alt-4,7-(2,1,3-benzothiadiazole] (PCPDTBT) were applied separately as donors mixed with derivatized carbon fullerence [6,6]-phenyl C61-butyric acid methyl ester (PC61BM) serving as an acceptor. Single layer photovoltaic cells of ITO/ PEDOT:PSS/polymer:PC61BM/LiF/Al were fabricated to study photovoltaic effect of layer thickness, thermal annealing, composition variance, and processing solvent. At a P3HT:PC61BM weight ratio of 1:1, the thermally annealed photovoltaic cells achieved a conversion efficiency (£bp) of 4.58 % from enhanced contact between cathode and active layer. At a PCPDTBT:PC61BM weight ratio of 1:1.25, the best £bp was 2.62 %. The efficiency difference was due to PCPDTBT:PC61BM was highly phase separated preventing the formation of conductive interpenetrating network to facilitate charge transport. Its device fill factor was limited to be 38 %. Under the same spin coating speed, solutions of different PC61BM concentration would yield different spun film thickness leading to large change in conversion efficiency (£bp). At a constant active layer thickness, £bp tended to be stable indicating that £bp was affected more by the layer thickness than by PC61BM concentration. A layer of mixing P3HT: PCPDTBT: PC61BM would expand the absorption range from visible to near infrared. However, an increased PCPDTBT concentration did not help £bp. This is due to charge transport imbalance between P3HT and PCPDTBT leading to an £bp less than those of individual blends with PC61BM. Device £bp was consistently higher for using a solvent with a boiling point higher than polymer glass transition temperature (Tg).
2

Células fotovoltaicas orgânicas do tipo heterojunção de volume fabricadas a partir de solventes não halogenados / Organic photovoltaic cells bulk-heterojunction manufactured from non-halogenated solvents

Sousa, Livia Maria de Castro 03 August 2018 (has links)
A crescente demanda energética mundial vem estimulando pesquisas em novas fontes de energia limpa e renovável e de baixo custo. Nesse contexto, as células solares orgânicas (fotovoltaicos orgânicos – OPVs) destacam-se como uma alternativa promissora no campo dos fotovoltaicos. Por serem fabricadas a partir de soluções eletrônicas, sua fabricação se dá deposição sobre substratos rígidos ou flexíveis, e com isso, também por técnicas de impressão. Muitas moléculas poliméricas têm mostrados excelentes resultados, porém o desempenho das células dependem também da morfologia do filme ultrafino da camada ativa, a qual depende do processamento e sobretudo da atividade dos solventes orgânicos. Até o momento, a maioria dos solventes usados para a fabricação das OPVs de alto desempenho é da classe dos halogenados, como por exemplo, o clorobenzeno e o 1,2-diclorobenzeno. Esses solventes, além de exibirem alto custo de produção, apresentam toxicidade relativamente alta, com impactos adversos à saúde humana e ao meio ambiente. Visto que a tecnologia dos OPVs está próxima de sua comercialização, a procura por solventes alternativos de baixa toxicidade coloca-se como um desafio a essa área. Neste trabalho, identificou-se por meio dos parâmetros de solubilidade de Hansen, um solvente da classe dos não halogenados e não aromáticos com baixa toxicidade ao ser humano e ambientalmente amigável para ser aplicado como solvente de processamento de células solares orgânicas do tipo heterojunção de volume (BHJ). Para isso, os possíveis solventes foram avaliados segundo os parâmetros de solubilidade de Hansen para os polímeros, P3HT e PTB7-Th, e para as moléculas PC61BM e PC71BM, levando em consideração os critérios de riscos com base na ficha de segurança de produtos químicos. Desse modo, a ciclohexanona foi selecionada por conter as características desejadas para o estudo proposto no presente trabalho. As soluções de P3HT e de PTB7- Th em ciclohexanona foram avaliadas quanto à influência da temperatura das soluções na conformação dos polímeros, a partir da técnica de termocromismo. Os resultados revelam necessidade de aquecimento para que haja uma conformação menos agregada tanto do P3HT quanto do PTB7-Th em solução de ciclohexanona. Os filmes de P3HT:PC61BM e PTB7-Th:PC71BM foram depositados pela técnica de spin-coating sobre substratos de vidro e estudos sobre sua morfologia foram realizados por técnicas de imagens de microscopia óptica, AFM e medidas de absorção pela técnica UV-vis, e correlacionadas ao desempenho das células fabricadas. Os resultados obtidos foram promissores uma vez que nesse trabalho conseguimos células de até 5,5 % de eficiência. / The growing global demand for energy has been stimulating research into new sources of clean and renewable energy and low cost. In this context, organic solar cells (organic photovoltaic - OPVs) stand out as a promising alternative in the field of photovoltaics. Because they are manufactured from electronic solutions, it can be deposited on rigid or flexible substrates, facilitating their production by printing techniques. Many polymer molecules have shown excellent results, but the performance of the cells also depends on the morphology of the ultrathin film of the active layer, which depends on the processing and above all the activity of the organic solvents. To date, most of the solvents used in the manufacture of high-performance OPVs belong to the halogen class, for example chlorobenzene and 1,2-dichlorobenzene. These solvents, in addition to exhibiting high cost of production, have relatively high toxicity, with adverse impacts on human health and the environment. Since the technology of OPVs is close to commercialization, the search for low-toxicity alternative solvents poses a challenge in this area. In this work, Hansen\'s solubility parameters were used to identify solvents of non-halogenated and non-aromatic class with low toxicity to humans and environmentally friendly, as substitutes of traditional solvents used to process organic solar cells (BHJ). For this, several solvents were evaluated according to the Hansen solubility parameters for the polymers, P3HT and PTB7-Th, and for the molecules PC61BM and PC71BM, taking into account the risk criteria based on the chemical safety data sheet. The solutions of P3HT and PTB7-Th in cyclohexanone were evaluated taking into account the influence of the temperature of the solutions on the conformation of the polymers, using the thermochromic technique. The solutions of P3HT and PTB7-Th in cyclohexanone were evaluated taking into account the influence of the temperature of the solutions on the conformation of the polymers, using the thermochromic technique. The resulted morphology was then correlated with the devices performance. The results obtained were promising since in this work we obtained cells of up to 5.5% efficiency.
3

Synthetic and composition modifications to nanoparticle-metallopolymer systems for improved stability and performance

Caraway, Jennifer Dowling 08 October 2013 (has links)
The work herein consists of two projects in which nanoparticle-metallopolymer hybrid bulk-heterojunction (BHJ) systems are modified for improved performance in photovoltaic and electronic applications. The first project describes the process for growing two distinct nanoparticle compositions within the same active layer of a conducting metallopolymer composed of two metal-complexes, which are based on the N,N’-((2,2’-dimethyl)propyl)bis(5-(2,2’-bithiophene-5-yl)salcylidenimine ligand. The second project describes the synthesis of an alternative electropolymerizable ligand N,N’-((2,2’-dimethyl)propyl)bis(5-(thieno[3,2-b]thiophen-5-yl) salicylidenimine. The purpose of exchanging of bithiophene moieties for fused-ring thieno[3,2-b]thiophene units was to produce a stabilizing effect in the resulting polymer, as evidenced by a slight delay in the rate of photo-bleaching. / text
4

Diodos e dispositivos fotovoltaicos flexíveis / Diodes and flexibles photovoltaic devices

Souza Filho, Idomeneu Gomes de 11 June 2019 (has links)
As aplicações dos dispositivos conversores de energia luminosa, principalmente da luz solar, em energia elétrica são muito variadas e com freqüência surge a possibilidade de uma nova aplicação. Muito tem sido discutido sobre aplicações de células solares em vestimentas, mochilas, tetos de estacionamentos e em embalagens eletrônicas. Esses tipos de aplicações não exigem dispositivos de alto desempenho, porém exigem que seja de baixo custo de processamento e, principalmente, que sejam flexíveis. Dispositivos fotovoltaicos flexíveis devem então ser fabricados por técnicas simples de processamento para permitir sua eventual produção em massa. Esse trabalho pretende dar uma contribuição na escolha dos materiais a serem usados em dispositivos fotovoltaicos flexíveis, focando seu desenvolvimento em células solares orgânicas de heterojunção de volume (BHJ), que são comumente processadas por solução. A estrutura escolhida foi a convencional de multicamadas onde o anodo transparente é o ITO (óxido de índio-estanho), seguida de uma camada transportadora de buracos (PEDOT:PSS), da camada ativa, e do cátodo, que em nosso caso foi formado por cálcio e alumínio, ambos depositados a vácuo. Como camada ativa, principal elemento de estudo nesse trabalho, foram estudados o P3HT:PC61BM, e o PTB7-Th:PC71BM, como elementos doador de elétrons (polímero) e aceitador de elétrons (derivado de fulereno). Em especial com o dispositivo fabricado com o PTB7-Th:PC71BM foi possível elaborar mudanças de processamento e assim melhorar consideravelmente a sua eficiência de conversão de potência. Em seguida, através de medidas de corrente-tensão (J-V) no escuro e sob iluminação, pudemos analisar a evolução dos parâmetros das células, como as resistências série (Rs) e paralelo (Rp), e também aqueles que definem a qualidade da célula solar: a corrente de curto-circuito (Jsc), a tensão de circuito aberto (Voc), o fator de preenchimento (FF), e a eficiência (η). Através dos ajustes das curvas J-V, no escuro e sob iluminação, usando expressões de J(V) extraídas de circuitos equivalentes, respectivamente, dos diodos e das células solares, pudemos realizar uma análise mais efetiva de como as resistências série e paralelo mudam com os elementos da camada ativa e também com diferentes processamentos. O fator de preenchimento (FF) é outro parâmetro importante que determina a eficiência de conversão de energia de uma célula solar orgânica, e existem vários fatores que podem influenciar significativamente o seu valor. Essa é uma das razões do porquê é difícil identificar a real origem desse parâmetro. Essa tese também deu elementos que correlacionam a estrutura química e morfológica da camada ativa com o fator de preenchimento. / The applications of light energy converters, especially the sunlight, in electrical energy are very varied and there is often the possibility of the appearance of new applications. Much has been discussed about solar cell applications in clothing, backpacks, parking ceilings and in electronic packaging. These types of applications do not require high-performance devices, but they do require low-cost processing and, above all, that they are flexible. Flexible photovoltaic devices must then be manufactured by simple processing techniques to allow their eventual mass production. This work intends to contribute to the choice of materials to be used in flexible photovoltaic devices, focusing their development on organic bulk heterojunction solar cells (BHJ), which are commonly processed via solution. The structure chosen for the device was the multilayer one, where the transparent anode is the ITO (indium- tin oxide), followed by a hole transport layer (PEDOT:PSS), the active layer, and the cathode, which in our case was formed by calcium and aluminum, both deposited under vacuum. As active layer, the main element of study in this work, we studied the P3HT: PC61BM and the PTB7-Th: PC71BM, as electron donor (polymer) and electron acceptor elements (derived from fullerene). In particular with the device made with the PTB7-Th:PC71BM it was possible to changes processing parameters and thus enhancing its power conversion efficiency. Then, through current-voltage measurements (J-V), in the dark and under illumination, we were able to analyze the evolution of the cell parameters, such as the series (Rs) and shunt (Rp) resistances, as well as those that define the solar cell quality: short-circuit current (Jsc), open-circuit voltage (Voc), fill factor (FF), and efficiency (η). Through the adjustments of the J-V curves, in the dark and under illumination, using J(V) expressions, for equivalent circuits of the diodes and solar cells respectively, we were able to perform a more effective analysis of how the series and shunt resistances change with the elements of the active layer and also with its processing. Fill factor (FF) is another important parameter that determines the energy conversion efficiency of an organic solar cell, and there are several factors that can significantly influence its value. This is one of the reasons why it is difficult to identify the true source of this parameter. This thesis also gave elements that correlate the chemical and morphological structure of the active layer with the fill factor.
5

Ternary blend ink formulations for fabricating organic solar cells via inkjet printing / Formulations ternaires d'encre de mélange pour fabriquer les piles solaires organiques par l'intermédiaire de l'impression de jet d'encre

Kraft, Thomas 27 May 2015 (has links)
L’objectif final de la thèse est l'impression de la couche photo-active ternaire d'une cellule solaire organique en utilisant deux approches: l'une concerne l'apport de nanotubes de carbone (SWCNT) pour améliorer les propriétés de transport, l'autre concerne la préparation de mélanges ternaires de matériaux pour contrôler la couleur des cellules. Les encres pour la couche active incluant des SWCNT fonctionnalisés sont composées d’un donneur d'électron (polymère) (poly(3-hexylthiophène), [P3HT]) et d’un accepteur d'électron ( [6,6]-phényl C61-butyrique ester méthylique d'acide [PCBM]) et ont été développées pour la fabrication de cellules inversées. Ces cellules sont réalisées sur substrats de verre pour l'optimisation de leurs performances, puis sur substrats plastiques pour les applications. Diverses couches d'interfaces ont été testées, qui incluent l'oxyde de zinc (ZnO, couches obtenues par pulvérisation ionique (IBS) ou à partir de solutions de nanoparticules) pour la couche de transport d'électrons et le PEDOT:PSS, le P3MEET, le V2O5 et le MoO3 pour la couche de transport de trous. Des essais ont été effectués avec et sans CNT afin d’étudier leur impact sur les performances. Des résultats similaires sont obtenus dans les deux cas. Il était attendu que les CNT améliorent les performances, ce qui n’a pas été observé pour le moment. Des travaux supplémentaires sont donc nécessaires au niveau de la formulation de la couche active.Avec trois polymères de couleur rouge (P3HT), bleu (B1) et vert (G1), nous avons préparé des mélanges ternaires efficaces permettant l'obtention de couleurs jusque là indisponibles . Nous avons fait une étude sur le piégeage et les mécanismes de diodes parallèles associés aux mélanges. En général, nous avons constaté que les mélanges ternaires de polymères bleu et vert peuvent être décrits par une mécanisme de diodes parallèles, sans entrainer de perte de performances, ce qui n'est pas possible pour les systèmes P3HT:B1 :PCBM et P3HT:G1:PCBM qui se piègent mutuellement. L’objectif final du projet est l'impression de la couche photo-active ternaire d'une cellule solaire organique, composites ternaires (polymère:polymères:acceptor) ou dopés avec les SWCNT. Cette étape nécessite encore des développements futurs. / Two approaches were followed to achieve increased control over properties of the photo-active layer (PAL) in solution processed polymer solar cells. This was accomplished by either (1) the addition of functionalized single-walled carbon nanotubes (SWCNTs) to improve the charge transport properties of the device or (2) the realization of dual donor polymer ternary blends to achieve colour-tuned devices.In the first component of the study, P3HT:PC61BM blends were doped with SWCNTs with the ambition to improve the morphology and charge transport within the PAL. The SWCNTs were functionalized with alkyl chains to increase their dispersive properties in solution, increase their interaction with the P3HT polymer matrix, and to disrupt the metallic characteristic of the tubes, which ensures that the incorporated SWCNTs are primarily semi-conducting. P3HT:PCBM:CNT composite films were characterized and prepared for use as the photoactive layer within the inverted solar cell. The CNT doping acts to increase order within the active layer and improve the active layer’s charge transport properties (conductivity) as well as showed some promise to increase the stability of the device. The goal is that improved charge transport will allow high level PSC performance as the active layer thickness and area is increased, which is an important consideration for large-area inkjet printing. The use of ternary blends (two donor polymers with a fullerene acceptor) in bulk-heterojunction (BHJ) photovoltaic devices was investigated as a future means to colour-tune ink-jet printed PSCs. The study involved the blending of two of the three chosen donor polymers [red (P3HT), blue (B1), and green (G1)] with PC61BM. Through EQE measurements, it was shown that even devices with blends exhibiting poor efficiencies, caused by traps, both polymers contributed to the PV effect. However, traps were avoided to create a parallel-like BHJ when two polymers were chosen with suitable physical compatibility (harmonious solid state mixing), and appropriate HOMO-HOMO energy band alignment. The parallel diode model was used to describe the PV circuit of devices with the B1:G1:PC61BM ternary blend.
6

Charge transport and energy levels in organic semiconductors / Ladungstransport und Energieniveaus in organischen Halbleitern

Widmer, Johannes 25 November 2014 (has links) (PDF)
Organic semiconductors are a new key technology for large-area and flexible thin-film electronics. They are deposited as thin films (sub-nanometer to micrometer) on large-area substrates. The technologically most advanced applications are organic light emitting diodes (OLEDs) and organic photovoltaics (OPV). For the improvement of performance and efficiency, correct modeling of the electronic processes in the devices is essential. Reliable characterization and validation of the electronic properties of the materials is simultaneously required for the successful optimization of devices. Furthermore, understanding the relations between material structures and their key characteristics opens the path for innovative material and device design. In this thesis, two material characterization methods are developed, respectively refined and applied: a novel technique for measuring the charge carrier mobility μ and a way to determine the ionization energy IE or the electron affinity EA of an organic semiconductor. For the mobility measurements, a new evaluation approach for space-charge limited current (SCLC) measurements in single carrier devices is developed. It is based on a layer thickness variation of the material under investigation. In the \"potential mapping\" (POEM) approach, the voltage as a function of the device thickness V(d) at a given current density is shown to coincide with the spatial distribution of the electric potential V(x) in the thickest device. On this basis, the mobility is directly obtained as function of the electric field F and the charge carrier density n. The evaluation is model-free, i.e. a model for μ(F, n) to fit the measurement data is not required, and the measurement is independent of a possible injection barrier or potential drop at non-optimal contacts. The obtained μ(F, n) function describes the effective average mobility of free and trapped charge carriers. This approach realistically describes charge transport in energetically disordered materials, where a clear differentiation between trapped and free charges is impossible or arbitrary. The measurement of IE and EA is performed by characterizing solar cells at varying temperature T. In suitably designed devices based on a bulk heterojunction (BHJ), the open-circuit voltage Voc is a linear function of T with negative slope in the whole measured range down to 180K. The extrapolation to temperature zero V0 = Voc(T → 0K) is confirmed to equal the effective gap Egeff, i.e. the difference between the EA of the acceptor and the IE of the donor. The successive variation of different components of the devices and testing their influence on V0 verifies the relation V0 = Egeff. On this basis, the IE or EA of a material can be determined in a BHJ with a material where the complementary value is known. The measurement is applied to a number of material combinations, confirming, refining, and complementing previously reported values from ultraviolet photo electron spectroscopy (UPS) and inverse photo electron spectroscopy (IPES). These measurements are applied to small molecule organic semiconductors, including mixed layers. In blends of zinc-phthalocyanine (ZnPc) and C60, the hole mobility is found to be thermally and field activated, as well as increasing with charge density. Varying the mixing ratio, the hole mobility is found to increase with increasing ZnPc content, while the effective gap stays unchanged. A number of further materials and material blends are characterized with respect to hole and electron mobility and the effective gap, including highly diluted donor blends, which have been little investigated before. In all materials, a pronounced field activation of the mobility is observed. The results enable an improved detailed description of the working principle of organic solar cells and support the future design of highly efficient and optimized devices. / Organische Halbleiter sind eine neue Schlüsseltechnologie für großflächige und flexible Dünnschichtelektronik. Sie werden als dünne Materialschichten (Sub-Nanometer bis Mikrometer) auf großflächige Substrate aufgebracht. Die technologisch am weitesten fortgeschrittenen Anwendungen sind organische Leuchtdioden (OLEDs) und organische Photovoltaik (OPV). Zur weiteren Steigerung von Leistungsfähigkeit und Effizienz ist die genaue Modellierung elektronischer Prozesse in den Bauteilen von grundlegender Bedeutung. Für die erfolgreiche Optimierung von Bauteilen ist eine zuverlässige Charakterisierung und Validierung der elektronischen Materialeigenschaften gleichermaßen erforderlich. Außerdem eröffnet das Verständnis der Zusammenhänge zwischen Materialstruktur und -eigenschaften einen Weg für innovative Material- und Bauteilentwicklung. Im Rahmen dieser Dissertation werden zwei Methoden für die Materialcharakterisierung entwickelt, verfeinert und angewandt: eine neuartige Methode zur Messung der Ladungsträgerbeweglichkeit μ und eine Möglichkeit zur Bestimmung der Ionisierungsenergie IE oder der Elektronenaffinität EA eines organischen Halbleiters. Für die Beweglichkeitsmessungen wird eine neue Auswertungsmethode für raumladungsbegrenzte Ströme (SCLC) in unipolaren Bauteilen entwickelt. Sie basiert auf einer Schichtdickenvariation des zu charakterisierenden Materials. In einem Ansatz zur räumlichen Abbildung des elektrischen Potentials (\"potential mapping\", POEM) wird gezeigt, dass das elektrische Potential als Funktion der Schichtdicke V(d) bei einer gegebenen Stromdichte dem räumlichen Verlauf des elektrischen Potentials V(x) im dicksten Bauteil entspricht. Daraus kann die Beweglichkeit als Funktion des elektrischen Felds F und der Ladungsträgerdichte n berechnet werden. Die Auswertung ist modellfrei, d.h. ein Modell zum Angleichen der Messdaten ist für die Berechnung von μ(F, n) nicht erforderlich. Die Messung ist außerdem unabhängig von einer möglichen Injektionsbarriere oder einer Potentialstufe an nicht-idealen Kontakten. Die gemessene Funktion μ(F, n) beschreibt die effektive durchschnittliche Beweglichkeit aller freien und in Fallenzuständen gefangenen Ladungsträger. Dieser Zugang beschreibt den Ladungstransport in energetisch ungeordneten Materialien realistisch, wo eine klare Unterscheidung zwischen freien und Fallenzuständen nicht möglich oder willkürlich ist. Die Messung von IE und EA wird mithilfe temperaturabhängiger Messungen an Solarzellen durchgeführt. In geeigneten Bauteilen mit einem Mischschicht-Heteroübergang (\"bulk heterojunction\" BHJ) ist die Leerlaufspannung Voc im gesamten Messbereich oberhalb 180K eine linear fallende Funktion der Temperatur T. Es kann bestätigt werden, dass die Extrapolation zum Temperaturnullpunkt V0 = Voc(T → 0K) mit der effektiven Energielücke Egeff , d.h. der Differenz zwischen EA des Akzeptor-Materials und IE des Donator-Materials, übereinstimmt. Die systematische schrittweise Variation einzelner Bestandteile der Solarzellen und die Überprüfung des Einflusses auf V0 bestätigen die Beziehung V0 = Egeff. Damit kann die IE oder EA eines Materials bestimmt werden, indem man es in einem BHJ mit einem Material kombiniert, dessen komplementärer Wert bekannt ist. Messungen per Ultraviolett-Photoelektronenspektroskopie (UPS) und inverser Photoelektronenspektroskopie (IPES) werden damit bestätigt, präzisiert und ergänzt. Die beiden entwickelten Messmethoden werden auf organische Halbleiter aus kleinen Molekülen einschließlich Mischschichten angewandt. In Mischschichten aus Zink-Phthalocyanin (ZnPc) und C60 wird eine Löcherbeweglichkeit gemessen, die sowohl thermisch als auch feld- und ladungsträgerdichteaktiviert ist. Wenn das Mischverhältnis variiert wird, steigt die Löcherbeweglichkeit mit zunehmendem ZnPc-Anteil, während die effektive Energielücke unverändert bleibt. Verschiedene weitere Materialien und Materialmischungen werden hinsichtlich Löcher- und Elektronenbeweglichkeit sowie ihrer Energielücke charakterisiert, einschließlich bisher wenig untersuchter hochverdünnter Donator-Systeme. In allen Materialien wird eine deutliche Feldaktivierung der Beweglichkeit beobachtet. Die Ergebnisse ermöglichen eine verbesserte Beschreibung der detaillierten Funktionsweise organischer Solarzellen und unterstützen die künftige Entwicklung hocheffizienter und optimierter Bauteile.
7

Charge transport and energy levels in organic semiconductors

Widmer, Johannes 02 October 2014 (has links)
Organic semiconductors are a new key technology for large-area and flexible thin-film electronics. They are deposited as thin films (sub-nanometer to micrometer) on large-area substrates. The technologically most advanced applications are organic light emitting diodes (OLEDs) and organic photovoltaics (OPV). For the improvement of performance and efficiency, correct modeling of the electronic processes in the devices is essential. Reliable characterization and validation of the electronic properties of the materials is simultaneously required for the successful optimization of devices. Furthermore, understanding the relations between material structures and their key characteristics opens the path for innovative material and device design. In this thesis, two material characterization methods are developed, respectively refined and applied: a novel technique for measuring the charge carrier mobility μ and a way to determine the ionization energy IE or the electron affinity EA of an organic semiconductor. For the mobility measurements, a new evaluation approach for space-charge limited current (SCLC) measurements in single carrier devices is developed. It is based on a layer thickness variation of the material under investigation. In the \"potential mapping\" (POEM) approach, the voltage as a function of the device thickness V(d) at a given current density is shown to coincide with the spatial distribution of the electric potential V(x) in the thickest device. On this basis, the mobility is directly obtained as function of the electric field F and the charge carrier density n. The evaluation is model-free, i.e. a model for μ(F, n) to fit the measurement data is not required, and the measurement is independent of a possible injection barrier or potential drop at non-optimal contacts. The obtained μ(F, n) function describes the effective average mobility of free and trapped charge carriers. This approach realistically describes charge transport in energetically disordered materials, where a clear differentiation between trapped and free charges is impossible or arbitrary. The measurement of IE and EA is performed by characterizing solar cells at varying temperature T. In suitably designed devices based on a bulk heterojunction (BHJ), the open-circuit voltage Voc is a linear function of T with negative slope in the whole measured range down to 180K. The extrapolation to temperature zero V0 = Voc(T → 0K) is confirmed to equal the effective gap Egeff, i.e. the difference between the EA of the acceptor and the IE of the donor. The successive variation of different components of the devices and testing their influence on V0 verifies the relation V0 = Egeff. On this basis, the IE or EA of a material can be determined in a BHJ with a material where the complementary value is known. The measurement is applied to a number of material combinations, confirming, refining, and complementing previously reported values from ultraviolet photo electron spectroscopy (UPS) and inverse photo electron spectroscopy (IPES). These measurements are applied to small molecule organic semiconductors, including mixed layers. In blends of zinc-phthalocyanine (ZnPc) and C60, the hole mobility is found to be thermally and field activated, as well as increasing with charge density. Varying the mixing ratio, the hole mobility is found to increase with increasing ZnPc content, while the effective gap stays unchanged. A number of further materials and material blends are characterized with respect to hole and electron mobility and the effective gap, including highly diluted donor blends, which have been little investigated before. In all materials, a pronounced field activation of the mobility is observed. The results enable an improved detailed description of the working principle of organic solar cells and support the future design of highly efficient and optimized devices.:1. Introduction 2. Organic semiconductors and devices 2.1. Organic semiconductors 2.1.1. Conjugated π system 2.1.2. Small molecules and polymers 2.1.3. Disorder in amorphous materials 2.1.4. Polarons 2.1.5. Polaron hopping 2.1.6. Fermi-Dirac distribution and Fermi level 2.1.7. Quasi-Fermi levels 2.1.8. Trap states 2.1.9. Doping 2.1.10. Excitons 2.2. Interfaces and blend layers 2.2.1. Interface dipoles 2.2.2. Energy level bending 2.2.3. Injection from metal into semiconductor, and extraction 2.2.4. Excitons at interfaces 2.3. Charge transport and recombination in organic semiconductors 2.3.1. Drift transport 2.3.2. Charge carrier mobility 2.3.3. Thermally activated transport 2.3.4. Diffusion transport 2.3.5. Drift-diffusion transport 2.3.6. Space-charge limited current 2.3.7. Recombination 2.4. Mobility measurement 2.4.1. SCLC and TCLC 2.4.2. Time of flight 2.4.3. Organic field effect transistors 2.4.4. CELIV 2.5. Organic solar cells 2.5.1. Exciton diffusion towards the interface 2.5.2. Dissociation of CT states 2.5.3. CT recombination 2.5.4. Flat and bulk heterojunction 2.5.5. Transport layers 2.5.6. Thin film optics 2.5.7. Current-voltage characteristics and equivalent circuit 2.5.8. Solar cell efficiency 2.5.9. Limits of efficiency 2.5.10. Correct solar cell characterization 2.5.11. The \"O-Factor\" 3. Materials and experimental methods 3.1. Materials 3.2. Device fabrication and layout 3.2.1. Layer deposition 3.2.2. Encapsulation 3.2.3. Homogeneity of layer thickness on a wafer 3.2.4. Device layout 3.3. Characterization 3.3.1. Electrical characterization 3.3.2. Sample illumination 3.3.3. Temperature dependent characterization 3.3.4. UPS 4. Simulations 5.1. Design of single carrier devices 5.1.1. General design requirements 5.1.2. Single carrier devices for space-charge limited current 5.1.3. Ohmic regime 5.1.4. Design of injection and extraction layers 5.2. Advanced evaluation of SCLC – potential mapping 5.2.1. Potential mapping by thickness variation 5.2.2. Further evaluation of the transport profile 5.2.3. Injection into and extraction from single carrier devices 5.2.4. Majority carrier approximation 5.3. Proof of principle: POEM on simulated data 5.3.1. Constant mobility 5.3.2. Field dependent mobility 5.3.3. Field and charge density activated mobility 5.3.4. Conclusion 5.4. Application: Transport characterization in organic semiconductors 5.4.1. Hole transport in ZnPc:C60 5.4.2. Hole transport in ZnPc:C60 – temperature variation 5.4.3. Hole transport in ZnPc:C60 – blend ratio variation 5.4.4. Hole transport in ZnPc:C70 5.4.5. Hole transport in neat ZnPc 5.4.6. Hole transport in F4-ZnPc:C60 5.4.7. Hole transport in DCV-5T-Me33:C60 5.4.8. Electron transport in ZnPc:C60 5.4.9. Electron transport in neat Bis-HFl-NTCDI 5.5. Summary and discussion of the results 5.5.1. Phthalocyanine:C60 blends 5.5.2. DCV-5T-Me33:C60 5.5.3. Conclusion 6. Organic solar cell characteristics: the influence of temperature 6.1. ZnPc:C60 solar cells 6.1.1. Temperature variation 6.1.2. Illumination intensity variation 6.2. Voc in flat and bulk heterojunction organic solar cells 6.2.1. Qualitative difference in Voc(I, T) 6.2.2. Interpretation of Voc(I, T) 6.3. BHJ stoichiometry variation 6.3.1. Voc upon variation of stoichiometry and contact layer 6.3.2. V0 upon stoichiometry variation 6.3.3. Low donor content stoichiometry 6.3.4. Conclusion from stoichiometry variation 6.4. Transport material variation 6.4.1. HTM variation 6.4.2. ETM variation 6.5. Donor:acceptor material variation 6.5.1. Donor variation 6.5.2. Acceptor variation 6.6. Conclusion 7. Summary and outlook 7.1. Summary 7.2. Outlook A. Appendix A.1. Energy pay-back of this thesis A.2. Tables and registers / Organische Halbleiter sind eine neue Schlüsseltechnologie für großflächige und flexible Dünnschichtelektronik. Sie werden als dünne Materialschichten (Sub-Nanometer bis Mikrometer) auf großflächige Substrate aufgebracht. Die technologisch am weitesten fortgeschrittenen Anwendungen sind organische Leuchtdioden (OLEDs) und organische Photovoltaik (OPV). Zur weiteren Steigerung von Leistungsfähigkeit und Effizienz ist die genaue Modellierung elektronischer Prozesse in den Bauteilen von grundlegender Bedeutung. Für die erfolgreiche Optimierung von Bauteilen ist eine zuverlässige Charakterisierung und Validierung der elektronischen Materialeigenschaften gleichermaßen erforderlich. Außerdem eröffnet das Verständnis der Zusammenhänge zwischen Materialstruktur und -eigenschaften einen Weg für innovative Material- und Bauteilentwicklung. Im Rahmen dieser Dissertation werden zwei Methoden für die Materialcharakterisierung entwickelt, verfeinert und angewandt: eine neuartige Methode zur Messung der Ladungsträgerbeweglichkeit μ und eine Möglichkeit zur Bestimmung der Ionisierungsenergie IE oder der Elektronenaffinität EA eines organischen Halbleiters. Für die Beweglichkeitsmessungen wird eine neue Auswertungsmethode für raumladungsbegrenzte Ströme (SCLC) in unipolaren Bauteilen entwickelt. Sie basiert auf einer Schichtdickenvariation des zu charakterisierenden Materials. In einem Ansatz zur räumlichen Abbildung des elektrischen Potentials (\"potential mapping\", POEM) wird gezeigt, dass das elektrische Potential als Funktion der Schichtdicke V(d) bei einer gegebenen Stromdichte dem räumlichen Verlauf des elektrischen Potentials V(x) im dicksten Bauteil entspricht. Daraus kann die Beweglichkeit als Funktion des elektrischen Felds F und der Ladungsträgerdichte n berechnet werden. Die Auswertung ist modellfrei, d.h. ein Modell zum Angleichen der Messdaten ist für die Berechnung von μ(F, n) nicht erforderlich. Die Messung ist außerdem unabhängig von einer möglichen Injektionsbarriere oder einer Potentialstufe an nicht-idealen Kontakten. Die gemessene Funktion μ(F, n) beschreibt die effektive durchschnittliche Beweglichkeit aller freien und in Fallenzuständen gefangenen Ladungsträger. Dieser Zugang beschreibt den Ladungstransport in energetisch ungeordneten Materialien realistisch, wo eine klare Unterscheidung zwischen freien und Fallenzuständen nicht möglich oder willkürlich ist. Die Messung von IE und EA wird mithilfe temperaturabhängiger Messungen an Solarzellen durchgeführt. In geeigneten Bauteilen mit einem Mischschicht-Heteroübergang (\"bulk heterojunction\" BHJ) ist die Leerlaufspannung Voc im gesamten Messbereich oberhalb 180K eine linear fallende Funktion der Temperatur T. Es kann bestätigt werden, dass die Extrapolation zum Temperaturnullpunkt V0 = Voc(T → 0K) mit der effektiven Energielücke Egeff , d.h. der Differenz zwischen EA des Akzeptor-Materials und IE des Donator-Materials, übereinstimmt. Die systematische schrittweise Variation einzelner Bestandteile der Solarzellen und die Überprüfung des Einflusses auf V0 bestätigen die Beziehung V0 = Egeff. Damit kann die IE oder EA eines Materials bestimmt werden, indem man es in einem BHJ mit einem Material kombiniert, dessen komplementärer Wert bekannt ist. Messungen per Ultraviolett-Photoelektronenspektroskopie (UPS) und inverser Photoelektronenspektroskopie (IPES) werden damit bestätigt, präzisiert und ergänzt. Die beiden entwickelten Messmethoden werden auf organische Halbleiter aus kleinen Molekülen einschließlich Mischschichten angewandt. In Mischschichten aus Zink-Phthalocyanin (ZnPc) und C60 wird eine Löcherbeweglichkeit gemessen, die sowohl thermisch als auch feld- und ladungsträgerdichteaktiviert ist. Wenn das Mischverhältnis variiert wird, steigt die Löcherbeweglichkeit mit zunehmendem ZnPc-Anteil, während die effektive Energielücke unverändert bleibt. Verschiedene weitere Materialien und Materialmischungen werden hinsichtlich Löcher- und Elektronenbeweglichkeit sowie ihrer Energielücke charakterisiert, einschließlich bisher wenig untersuchter hochverdünnter Donator-Systeme. In allen Materialien wird eine deutliche Feldaktivierung der Beweglichkeit beobachtet. Die Ergebnisse ermöglichen eine verbesserte Beschreibung der detaillierten Funktionsweise organischer Solarzellen und unterstützen die künftige Entwicklung hocheffizienter und optimierter Bauteile.:1. Introduction 2. Organic semiconductors and devices 2.1. Organic semiconductors 2.1.1. Conjugated π system 2.1.2. Small molecules and polymers 2.1.3. Disorder in amorphous materials 2.1.4. Polarons 2.1.5. Polaron hopping 2.1.6. Fermi-Dirac distribution and Fermi level 2.1.7. Quasi-Fermi levels 2.1.8. Trap states 2.1.9. Doping 2.1.10. Excitons 2.2. Interfaces and blend layers 2.2.1. Interface dipoles 2.2.2. Energy level bending 2.2.3. Injection from metal into semiconductor, and extraction 2.2.4. Excitons at interfaces 2.3. Charge transport and recombination in organic semiconductors 2.3.1. Drift transport 2.3.2. Charge carrier mobility 2.3.3. Thermally activated transport 2.3.4. Diffusion transport 2.3.5. Drift-diffusion transport 2.3.6. Space-charge limited current 2.3.7. Recombination 2.4. Mobility measurement 2.4.1. SCLC and TCLC 2.4.2. Time of flight 2.4.3. Organic field effect transistors 2.4.4. CELIV 2.5. Organic solar cells 2.5.1. Exciton diffusion towards the interface 2.5.2. Dissociation of CT states 2.5.3. CT recombination 2.5.4. Flat and bulk heterojunction 2.5.5. Transport layers 2.5.6. Thin film optics 2.5.7. Current-voltage characteristics and equivalent circuit 2.5.8. Solar cell efficiency 2.5.9. Limits of efficiency 2.5.10. Correct solar cell characterization 2.5.11. The \"O-Factor\" 3. Materials and experimental methods 3.1. Materials 3.2. Device fabrication and layout 3.2.1. Layer deposition 3.2.2. Encapsulation 3.2.3. Homogeneity of layer thickness on a wafer 3.2.4. Device layout 3.3. Characterization 3.3.1. Electrical characterization 3.3.2. Sample illumination 3.3.3. Temperature dependent characterization 3.3.4. UPS 4. Simulations 5.1. Design of single carrier devices 5.1.1. General design requirements 5.1.2. Single carrier devices for space-charge limited current 5.1.3. Ohmic regime 5.1.4. Design of injection and extraction layers 5.2. Advanced evaluation of SCLC – potential mapping 5.2.1. Potential mapping by thickness variation 5.2.2. Further evaluation of the transport profile 5.2.3. Injection into and extraction from single carrier devices 5.2.4. Majority carrier approximation 5.3. Proof of principle: POEM on simulated data 5.3.1. Constant mobility 5.3.2. Field dependent mobility 5.3.3. Field and charge density activated mobility 5.3.4. Conclusion 5.4. Application: Transport characterization in organic semiconductors 5.4.1. Hole transport in ZnPc:C60 5.4.2. Hole transport in ZnPc:C60 – temperature variation 5.4.3. Hole transport in ZnPc:C60 – blend ratio variation 5.4.4. Hole transport in ZnPc:C70 5.4.5. Hole transport in neat ZnPc 5.4.6. Hole transport in F4-ZnPc:C60 5.4.7. Hole transport in DCV-5T-Me33:C60 5.4.8. Electron transport in ZnPc:C60 5.4.9. Electron transport in neat Bis-HFl-NTCDI 5.5. Summary and discussion of the results 5.5.1. Phthalocyanine:C60 blends 5.5.2. DCV-5T-Me33:C60 5.5.3. Conclusion 6. Organic solar cell characteristics: the influence of temperature 6.1. ZnPc:C60 solar cells 6.1.1. Temperature variation 6.1.2. Illumination intensity variation 6.2. Voc in flat and bulk heterojunction organic solar cells 6.2.1. Qualitative difference in Voc(I, T) 6.2.2. Interpretation of Voc(I, T) 6.3. BHJ stoichiometry variation 6.3.1. Voc upon variation of stoichiometry and contact layer 6.3.2. V0 upon stoichiometry variation 6.3.3. Low donor content stoichiometry 6.3.4. Conclusion from stoichiometry variation 6.4. Transport material variation 6.4.1. HTM variation 6.4.2. ETM variation 6.5. Donor:acceptor material variation 6.5.1. Donor variation 6.5.2. Acceptor variation 6.6. Conclusion 7. Summary and outlook 7.1. Summary 7.2. Outlook A. Appendix A.1. Energy pay-back of this thesis A.2. Tables and registers

Page generated in 0.0241 seconds