Spelling suggestions: "subject:"energielücke"" "subject:"energielücken""
1 |
π-Extended and Curved Antiaromatic Polycyclic HydrocarbonsLiu, Junzhi, Ma, Ji, Zhang, Ke, Ravat, Prince, Machata, Peter, Avdoshenko, Stanislav, Hennersdorf, Felix, Komber, Hartmut, Pisula, Wojciech, Weigand, Jan J., Popov, Alexey A., Berger, Reinhard, Müllen, Klaus, Feng, Xinliang 06 January 2020 (has links)
Synthesis of antiaromatic polycyclic hydrocarbons (PHs) is challenging because the high energy of their highest occupied molecular orbital and low energy of their lowest unoccupied molecular orbital cause them to be reactive and unstable. In this work, two large antiaromatic acene analogues, namely, cyclopenta[pqr]indeno[2,1,7-ijk]tetraphene (CIT, 1a) and cyclopenta[pqr]indeno[7,1,2-cde]picene (CIP, 1b), as well as a curved antiaromatic molecule with 48 πelectrons, dibenzo[a,c]diindeno[7,1,2-fgh:7′,1′,2′-mno]-phenanthro[9,10-k]tetraphene (DPT, 1c), are synthesized on the basis of the corona of indeno[1,2-b]fluorene. These three antiaromatic PHs possess a narrow energy gap down to 1.55 eV and exhibit high kinetic stability under ambient conditions. Moreover, these compounds display reversible electron transfer processes in both the cathodic and anodic regimes. Their cation and anion radicals are characterized by in situ vis−NIR absorption and electron paramagnetic resonance spectroelectrochemistry. The X-ray crystallographic analysis confirms that while CIP and CIT manifest planar structures, DPT shows a curved πconjugated carbon skeleton. The synthetic strategy starting from ortho-substituted benzene units to construct five-membered rings in this work provides a unique entry to novel pentagon-embedding or curved antiaromatic polycyclic hydrocarbons. In addition, besides the detailed chemical and physical investigations, microscale single-crystal fiber field-effect transistors were also fabricated.
|
2 |
Terahertz and infrared spectroscopy of novel superconductorsChanda, Geoffrey 16 December 2014 (has links) (PDF)
The present thesis is devoted to the investigation of novel superconductors by phase-sensitive terahertz transmission and infrared to ultraviolet spectroscopy. In particular, a nominally undoped Pr2CuO4 superconducting thin film, an FeTe0.5Se0.5 thin film, and a LiFeAs single crystal have been investigated. The emphasis is on the low-frequency part of the optical spectrum (i.e., the terahertz and infrared spectrum), as the goal of the study was to shed light on the size and symmetry of the superconducting gaps and also to determine the temperature dependences as well as the absolute values of the penetration depth, which are key input parameters for models applicable for new superconductors. In addition, niobium has been investigated as a reference, so as to see what is expected from conventional superconductors and to clarify the electrodynamics of niobium.
A superconducting Nb thin film with Tc of 8.04 K has been investigated by backward wave oscillator-based (BWO-based) and time-domain terahertz (TDT) spectrometers in the frequency range between 4 and 100 cm−1 for temperatures ranging from 2 to 10 K. From these measurements an energy gap of 22.50 cm−1 = 2.79 meV = 4.02kBTc have been determined. The optical conductivity below Tc could nicely be described by calculations according to the Eliashberg theory, with the electron-phonon interaction evaluated from tunneling measurements.
Absolute values of the penetration depth have been calculated from phase-sensitive terahertz measurements. The zero-temperature limit of at T = 0 is found to be 115 ± 5 nm. From this value, a London penetration depth of 43 ± 2 nm has been obtained. The overall temperature dependence of the penetration depth follows a behavior typical for conventional s-wave superconductors.
A superconducting Pr2CuO4 film with T0 structure and Tc of 27 K has been investigated by use of optical methods in a wide frequency (5 – 55000 cm−1) and temperature (2 – 300 K) range. A Drude-like peak centered at zero frequency is observed in the optical conductivity below 150 K, above which it shifts to finite frequencies. The detailed analysis of the low-frequency conductivity reveals that the Drude peak and a far-infrared (FIR) peak centered at about 300 cm−1 persist at all temperatures. The FIR spectral weight is found to grow at the expense of the Drude spectral weight with increasing temperature. Absolute values of the penetration depth have been obtained from temperature and frequency-dependent measurements. The zero-temperature limit of is estimated to be 1600 ± 100 nm. The overall temperature dependence of follows a behaviour typical for cuprate superconductors. However, a closer look at the penetration depth at T 12 K reveals a flattening in the temperature dependence.
A superconducting FeTe0.5Se0.5 thin film with Tc = 19 K has been investigated using a combination of BWO and TDT spectroscopy in the frequency range 4 - 80 cm−1 and between 3 and 150 K. From such measurements, a superconducting energy gap of 30 cm−1, representing a coupling strength = 2.27, is observed. Further, the penetration depth has been derived from the temperature dependence of the imaginary part of complex conductivity with the penetration depth = 530 ± 10 nm at lowest measured temperature. The temperature-dependent normalized superfluid density, just as is the case with most iron-based superconductors, could nicely be described by the so-called two-gap gamma model.
Finally, a superconducting LiFeAs single crystal with Tc = 18 K has been investigated by optical spectroscopy in the frequency range 15 - 55000 cm−1 between 5 and 300 K. From these measurements, no clear signature of the superconducting energy-gap opening could be identified in spite of the spectral weight been suppressed in the infrared frequency regime below Tc. This indicates that LiFeAs single crystal is in a clean limit. With the aid of the Ferrell-Glover-Tinkham (FGT) sum rule, an absolute penetration depth of 215 nm has been calculated from the missing area at 5 K.
|
3 |
Terahertz and infrared spectroscopy of novel superconductorsChanda, Geoffrey 12 November 2014 (has links)
The present thesis is devoted to the investigation of novel superconductors by phase-sensitive terahertz transmission and infrared to ultraviolet spectroscopy. In particular, a nominally undoped Pr2CuO4 superconducting thin film, an FeTe0.5Se0.5 thin film, and a LiFeAs single crystal have been investigated. The emphasis is on the low-frequency part of the optical spectrum (i.e., the terahertz and infrared spectrum), as the goal of the study was to shed light on the size and symmetry of the superconducting gaps and also to determine the temperature dependences as well as the absolute values of the penetration depth, which are key input parameters for models applicable for new superconductors. In addition, niobium has been investigated as a reference, so as to see what is expected from conventional superconductors and to clarify the electrodynamics of niobium.
A superconducting Nb thin film with Tc of 8.04 K has been investigated by backward wave oscillator-based (BWO-based) and time-domain terahertz (TDT) spectrometers in the frequency range between 4 and 100 cm−1 for temperatures ranging from 2 to 10 K. From these measurements an energy gap of 22.50 cm−1 = 2.79 meV = 4.02kBTc have been determined. The optical conductivity below Tc could nicely be described by calculations according to the Eliashberg theory, with the electron-phonon interaction evaluated from tunneling measurements.
Absolute values of the penetration depth have been calculated from phase-sensitive terahertz measurements. The zero-temperature limit of at T = 0 is found to be 115 ± 5 nm. From this value, a London penetration depth of 43 ± 2 nm has been obtained. The overall temperature dependence of the penetration depth follows a behavior typical for conventional s-wave superconductors.
A superconducting Pr2CuO4 film with T0 structure and Tc of 27 K has been investigated by use of optical methods in a wide frequency (5 – 55000 cm−1) and temperature (2 – 300 K) range. A Drude-like peak centered at zero frequency is observed in the optical conductivity below 150 K, above which it shifts to finite frequencies. The detailed analysis of the low-frequency conductivity reveals that the Drude peak and a far-infrared (FIR) peak centered at about 300 cm−1 persist at all temperatures. The FIR spectral weight is found to grow at the expense of the Drude spectral weight with increasing temperature. Absolute values of the penetration depth have been obtained from temperature and frequency-dependent measurements. The zero-temperature limit of is estimated to be 1600 ± 100 nm. The overall temperature dependence of follows a behaviour typical for cuprate superconductors. However, a closer look at the penetration depth at T 12 K reveals a flattening in the temperature dependence.
A superconducting FeTe0.5Se0.5 thin film with Tc = 19 K has been investigated using a combination of BWO and TDT spectroscopy in the frequency range 4 - 80 cm−1 and between 3 and 150 K. From such measurements, a superconducting energy gap of 30 cm−1, representing a coupling strength = 2.27, is observed. Further, the penetration depth has been derived from the temperature dependence of the imaginary part of complex conductivity with the penetration depth = 530 ± 10 nm at lowest measured temperature. The temperature-dependent normalized superfluid density, just as is the case with most iron-based superconductors, could nicely be described by the so-called two-gap gamma model.
Finally, a superconducting LiFeAs single crystal with Tc = 18 K has been investigated by optical spectroscopy in the frequency range 15 - 55000 cm−1 between 5 and 300 K. From these measurements, no clear signature of the superconducting energy-gap opening could be identified in spite of the spectral weight been suppressed in the infrared frequency regime below Tc. This indicates that LiFeAs single crystal is in a clean limit. With the aid of the Ferrell-Glover-Tinkham (FGT) sum rule, an absolute penetration depth of 215 nm has been calculated from the missing area at 5 K.
|
4 |
Statistische Untersuchung zufälliger Konfigurationen des SiGe:C Kristalls mit DichtefunktionaltheorieRoscher, Willi 27 June 2019 (has links)
In der vorliegenden Arbeit wurde ausgedehntes Si_1−x Ge_x für unterschiedliche Zusammensetzungen 0 ≤ x ≤ 1 untersucht. Die Untersuchungen basierten auf der DFT, wobei das Programm QuantumATK 18.06 zum Einsatz kam. Für die Korrektur der Bandlücke wurden empirische Pseudopotential Projektor Shifts verwendet [34]. Für jede untersuchte Zusammensetzung wurden 500 zufällig generierte Konfigurationen der 64-atomigen Superzelle berechnet und statistisch
ausgewertet. Nach der Optimierung der Struktur erfolgte die Auswertung der Bandlücke indem über äquivalente Pfade in der Brillouinzone gemittelt wurde. Zusätzlich wurden nach dieser Art auch kleine Anteile an C untersucht.
Die Ergebnisse der Berechnungen zeigen für die Bildungsenergie der Mischstrukturen positive Werte mit einem Maximum bei mittleren Zusammensetzungen. Zur Stabilitätsuntersuchung der Legierungen wurde die Gibbs-Energie berechnet. Es ergeben sich negative Werte, was die Stabilität von SiGe bestätigt. Die berechnete Gitterkonstante der relaxierten Strukturen zeigt eine leichte Überschätzung der experimentellen Werte. Die ermittelten Bandlücken reproduzieren den Übergang von Si-artigen zu Ge-artigen Bandlücken bei x = 0.85. Die Werte der Bandlücke zeigen eine gute Übereinstimmung mit dem Experiment. Aus den statistischen Untersuchungen wird deutlich, dass sowohl Bildungsenergie als auch Bandlücke Variationen von 10 % und mehr aufweisen. Es zeigt sich dadurch ein nicht zu vernachlässigender Unterschied zwischen verschie denen Konfigurationen der Superzelle, die alle eine Legierung mit gleicher Zusammensetzung beschreiben.
Wird in die Strukturen Kohlenstoff eingebracht, so vergrößern sich die Variationen mit steigendem C-Anteil. Für die betrachteten kleine C-Anteile zeigt sich eine Erhöhung der Bildungsenergie und einer Verkleinerung der Gitterkonstante und der Bandlücke. Es wird deutlich, dass bereits wenig C einen Einfluss auf die wichtigen Eigenschaften der Legierung hat und für genaue Simulationen berücksichtigt werden muss.
Wie die Ergebnisse zeigen, spielt die spezielle Konfiguration von Strukturen im nm-Bereich eine wichtige Rolle. Aus diesem Grund wurde im zweiten Teil der Arbeit ein Ge-Profil nachgebildet, wie es in der Basis von HBTs vorkommt. Die Ergebnisse zeigen eine Verkleinerung der Bandlücke im SiGe-Bereich, welche im Wesentlichen durch zusätzliche Valenzzustände hervorgerufen wird. Diese Zustände sind in die z-Richtung lokalisiert. Die Leitungsbandkante bleibt von der SiGe-Region nahezu unbeeinflusst. Die Vergrößerung der SiGe-Region verkleinert die Bandlücke.:Abkürzungsverzeichnis - 5
1 Motivation - 6
2 Theoretische Grundlagen der Dichtefunktionaltheorie - 8
2.1 Quantenmechanische Vielteilchensysteme - 8
2.2 Hohenberg-Kohn-Theoreme - 9
2.3 Austausch-Korrelations-Funktional und Kohn-Sham-Gleichung - 10
3 Siliziumgermanium - 12
3.1 Kristallstruktur und Gitterkonstante - 12
3.2 Bandstruktur - 13
3.2.1 Bandstruktur von Si und Ge - 13
3.2.2 Bandlücke von SiGe - 14
3.2.3 Bandlücke von SiGe:C - 15
4 Modellierung und Methoden - 16
4.1 Modellzellen - 16
4.1.1 8-atomige konventionelle Einheitszelle - 16
4.1.2 64-atomige Superzelle - 17
4.2 Bildungsenergie und Stabilität von Legierungen - 20
4.2.1 Gibbs-Energie - 21
4.3 Faltung der Bandstruktur - 22
4.4 Korrektur und Ermittlung der Bandlücke - 24
4.4.1 Korrektur der Bandlücke - 24
4.4.2 Bestimmung der Bandlücke von ungeordneten Legierungen - 26
4.5 Berechnungsverfahren der Kristallstrukturen - 28
5 Ergebnisse und Auswertung - 29
5.1 Gitterkonstante - 29
5.2 Bildungsenergie und Änderung der Gibbs-Energie - 32
5.3 Bandlücke - 36
5.3.1 Leitungsbandminimum - 38
5.3.2 Bildungsenergie - 40
5.4 Bandstruktur - 42
6 Anwendung für die Basis von HBTs - 44
6.1 Modellierung - 45
6.2 Ergebnisse - 46
7 Zusammenfassung und Ausblick
Literatur - 49
Danksagung - 53
Selbstständigkeitserklärung - 54
|
5 |
Optical Anisotropy and Molecular Orientation of CuPc Films and Optical Properties of Ultra-thin High-k FilmsDing, Li 15 October 2012 (has links) (PDF)
In the thesis CuPc thin films were investigated by (in situ) SE and RAS, which are employed to determine the out-of-plane and in-plane optical anisotropy and molecular orientation, respectively. CuPc is a promising candidate of organic semiconductors used in organic field effect transistors, organic light emitting diodes and organic solar cells. Vicinal Si(111) substrates are interesting due to the in-plane anisotropy caused by the steps and terraces on the surface. The strength of in-plane anisotropy of vicinal Si(111) is dependent on the offcut angle. The influence of offcut angle on out-of-plane and in-plane molecular orientation in CuPc thin films is explored. The in situ investigation of CuPc films suggests that structural changes occur during film growth. In addition, two different surface modification layers were utilized to examine the effect on CuPc molecular orientation: OTS monolayer with upright standing molecules and PTCDA layers with flat lying molecules. Metal-organic interface plays an important role in organic electronic devices. In-CuPc is chosen to be an example system investigated employing in situ SE and RAS. When In was thermally evaporated onto CuPc film, In atoms firstly diffuse into the CuPc film underneath and then aggregate to form clusters on top.
Hafnium dioxide (HfO2) is currently a hot topic to replace the conventionally used SiO2 as gate dielectrics in order to minimize leakage current when further scaling down microelectronic devices. Since HfO2 films are often crystalline, in order to obtain amorphous films which are beneficial to minimize leakage current, aluminum oxide (Al2O3) (k value: 9) which stays amorphous at much higher temperatures are combined to overcome this difficulty. Two series of ultra-thin samples were deposited by atomic layer deposition: mixed layers HfxAl1-xOz and bilayers HfO2 on Al2O3. Optical constants and bandgap are determined using SE in the energy range of 0.7-10 eV. It is found that the (effective) optical bandgap of both mixed layer and bilayer structures can be tuned by the film composition. Aging effect of high-k films was observed after storage of samples in air for two months, which is attributed to further oxidation of the dielectric films caused by the oxygen diffusion from ambient air to high-k films. / In dieser Arbeit werden dünne Schichten aus Kupferphthalozyanin (CuPc) mittels spektroskopischer (in-situ) Ellipsometrie (SE) und (in-situ) Reflektions-Anisotropie-Spektroskopie (RAS) untersucht, um die optische Anisotropie in einer Ebene parallel und senkrecht zur Schichtoberfläche und die molekulare Orientierung zu bestimmen. CuPc ist ein aussichtsreicher Kandidat als organischer Halbleiter in organischen Feldeffekt-Transistoren, organischen Leuchtdioden und organischen Solarzellen. Vizinale Si(111)-Substrate sind wegen der Anisotropie in der Substratebene interessant, die durch die Treppen und Terrassen auf der Oberfläche verursacht wird. Die Stärke der Anisotropie der vizinalen Si(111)-Oberfläche ist vom Schnittwinkel (Offcut) abhängig. Es wird der Einfluss des Offcut-Winkels auf die molekulare Orientierung in dünnen CuPc-Schichten parallel und senkrecht zur Substratoberfläche untersucht. Die in-situ Untersuchungen von CuPc-Schichten weisen darauf hin, dass strukturelle Veränderungen beim Wachstum auftreten. Darüber hinaus wurden zwei unterschiedliche Oberflächenmodifizierungsschichten, um deren Wirkung auf die molekulare Orientierung von CuPc zu untersuchen, verwendet: eine OTS-Monoschicht mit aufrecht stehenden Molekülen und PTCDA-Schichten mit flach liegenden Molekülen. Metall-organische Grenzflächen spielen eine wichtige Rolle in organischen elektronischen Bauelementen. In-CuPc wird als Beispiel für ein Metall-organisches System durch in-situ SE und RAS untersucht. Wenn In thermisch auf eine CuPc-Schicht aufgedampft wird, diffundieren In-Atome zunächst in die darunterliegende CuPc-Schicht und bilden dann Cluster auf der Schicht.
Hafniumdioxid (HfO2) ist ein heißer Kandidat für das Ersetzen des herkömmlich als Gate-Dielektrikum verwendeten SiO2 mit dem Ziel, die Leckströme bei der weiteren Verkleinerung mikroelektronischer Bauelemente zu minimieren. Um amorphe Schichten, die vorteilhaft zur Minimierung der Leckströme sind, zu erhalten, werden die HfO2-Schichten, die oft kristallin sind, mit Aluminiumoxid (Al2O3) (k-Wert: 9) kombiniert, das bei wesentlich höheren Temperaturen amorph bleibt. Zwei Serien von ultra-dünnen Proben wurden durch Atomlagenabscheidung hergestellt: Mischschichten HfxAl1-xOz und Doppelschichten HfO2 auf Al2O3. Die optischen Konstanten und Bandlücken wurden mittels SE im Energiebereich von 0,7 bis 10 eV bestimmt. Es hat sich gezeigt, dass die (effektive) Bandlücke der Misch- und Doppelschichten durch die Komposition abgestimmt werden kann. Nach Lagerung der High-k-Schichten für zwei Monate an Luft konnte ein Alterungseffekt beobachtet werden. Dieser wird auf die weitere Oxidation der dielektrischen Schichten, die durch Sauerstoffdiffusion aus der Umgebungsluft in die High-k-Schichten ermöglicht wird, zurückgeführt.
|
6 |
Ultraschnelle optoelektronische und Materialeigenschaften von Stickstoff-haltigem GaAsSinning, Steffen 03 March 2006 (has links) (PDF)
This work summarizes properties of nitrogen containing GaAs, which are relevant for optoelectronic application and allow a deeper insight in the physics of this material. In the first part the dependence of the banggap energy of nitrogen implanted GaAs on several process parameters (implanted nitrogen concentration, implantation temperature, annealing duration and temperature) is investigated. The second part focuses on the relaxation dynamics of highly excited carriers. For this, the carrier relaxation dynamics in nitrogen implanted GaAs, in epitaxially grown GaAsN and in (pure) GaAs are investigated by means of pump probe measurements on a femtosecond time scale. The comparision of experimental results to calculated scattering rates leads to relevant informations of scattering mechanisms and electronic properties. / Diese Arbeit widmet sich Eigenschaften von Stickstoff-haltigem Gallium-Arsenid, die sowohl für das physikalische Verständnis als auch für optoelektronische Anwendungen dieses Materials relevant sind. Im ersten Teil dieser Arbeit wird die Abhängigkeit der Bandlücken-Energie von verschiedenen Prozess-Parametern (Stickstoffkonzentration, Implantationstemperatur, Ausheildauer und -temperatur) in Stickstoff-implantiertem GaAs untersucht. Der zweite Teil konzentriert sich auf die Relaxationsdynamik hoch angeregter Ladungsträger. Neben dem oben bereits angesprochenen Material wird in Anrege-Abfrage-Experimenten mit Femtosekunden-Zeitauflösung zusätzlich epitaktisch gewachsenes GaAsN und (Stickstoff-freies) GaAs untersucht. Die Berechnung der Streuraten und der Vergleich mit experimentell gewonnenen Daten liefert wesentliche Informationen über beteiligte Steumechanismen und elektronische Eigenschaften.
|
7 |
Optical Anisotropy and Molecular Orientation of CuPc Films and Optical Properties of Ultra-thin High-k Films: Optical Anisotropy and Molecular Orientation of CuPc Films and Optical Properties of Ultra-thin High-k FilmsDing, Li 25 September 2012 (has links)
In the thesis CuPc thin films were investigated by (in situ) SE and RAS, which are employed to determine the out-of-plane and in-plane optical anisotropy and molecular orientation, respectively. CuPc is a promising candidate of organic semiconductors used in organic field effect transistors, organic light emitting diodes and organic solar cells. Vicinal Si(111) substrates are interesting due to the in-plane anisotropy caused by the steps and terraces on the surface. The strength of in-plane anisotropy of vicinal Si(111) is dependent on the offcut angle. The influence of offcut angle on out-of-plane and in-plane molecular orientation in CuPc thin films is explored. The in situ investigation of CuPc films suggests that structural changes occur during film growth. In addition, two different surface modification layers were utilized to examine the effect on CuPc molecular orientation: OTS monolayer with upright standing molecules and PTCDA layers with flat lying molecules. Metal-organic interface plays an important role in organic electronic devices. In-CuPc is chosen to be an example system investigated employing in situ SE and RAS. When In was thermally evaporated onto CuPc film, In atoms firstly diffuse into the CuPc film underneath and then aggregate to form clusters on top.
Hafnium dioxide (HfO2) is currently a hot topic to replace the conventionally used SiO2 as gate dielectrics in order to minimize leakage current when further scaling down microelectronic devices. Since HfO2 films are often crystalline, in order to obtain amorphous films which are beneficial to minimize leakage current, aluminum oxide (Al2O3) (k value: 9) which stays amorphous at much higher temperatures are combined to overcome this difficulty. Two series of ultra-thin samples were deposited by atomic layer deposition: mixed layers HfxAl1-xOz and bilayers HfO2 on Al2O3. Optical constants and bandgap are determined using SE in the energy range of 0.7-10 eV. It is found that the (effective) optical bandgap of both mixed layer and bilayer structures can be tuned by the film composition. Aging effect of high-k films was observed after storage of samples in air for two months, which is attributed to further oxidation of the dielectric films caused by the oxygen diffusion from ambient air to high-k films. / In dieser Arbeit werden dünne Schichten aus Kupferphthalozyanin (CuPc) mittels spektroskopischer (in-situ) Ellipsometrie (SE) und (in-situ) Reflektions-Anisotropie-Spektroskopie (RAS) untersucht, um die optische Anisotropie in einer Ebene parallel und senkrecht zur Schichtoberfläche und die molekulare Orientierung zu bestimmen. CuPc ist ein aussichtsreicher Kandidat als organischer Halbleiter in organischen Feldeffekt-Transistoren, organischen Leuchtdioden und organischen Solarzellen. Vizinale Si(111)-Substrate sind wegen der Anisotropie in der Substratebene interessant, die durch die Treppen und Terrassen auf der Oberfläche verursacht wird. Die Stärke der Anisotropie der vizinalen Si(111)-Oberfläche ist vom Schnittwinkel (Offcut) abhängig. Es wird der Einfluss des Offcut-Winkels auf die molekulare Orientierung in dünnen CuPc-Schichten parallel und senkrecht zur Substratoberfläche untersucht. Die in-situ Untersuchungen von CuPc-Schichten weisen darauf hin, dass strukturelle Veränderungen beim Wachstum auftreten. Darüber hinaus wurden zwei unterschiedliche Oberflächenmodifizierungsschichten, um deren Wirkung auf die molekulare Orientierung von CuPc zu untersuchen, verwendet: eine OTS-Monoschicht mit aufrecht stehenden Molekülen und PTCDA-Schichten mit flach liegenden Molekülen. Metall-organische Grenzflächen spielen eine wichtige Rolle in organischen elektronischen Bauelementen. In-CuPc wird als Beispiel für ein Metall-organisches System durch in-situ SE und RAS untersucht. Wenn In thermisch auf eine CuPc-Schicht aufgedampft wird, diffundieren In-Atome zunächst in die darunterliegende CuPc-Schicht und bilden dann Cluster auf der Schicht.
Hafniumdioxid (HfO2) ist ein heißer Kandidat für das Ersetzen des herkömmlich als Gate-Dielektrikum verwendeten SiO2 mit dem Ziel, die Leckströme bei der weiteren Verkleinerung mikroelektronischer Bauelemente zu minimieren. Um amorphe Schichten, die vorteilhaft zur Minimierung der Leckströme sind, zu erhalten, werden die HfO2-Schichten, die oft kristallin sind, mit Aluminiumoxid (Al2O3) (k-Wert: 9) kombiniert, das bei wesentlich höheren Temperaturen amorph bleibt. Zwei Serien von ultra-dünnen Proben wurden durch Atomlagenabscheidung hergestellt: Mischschichten HfxAl1-xOz und Doppelschichten HfO2 auf Al2O3. Die optischen Konstanten und Bandlücken wurden mittels SE im Energiebereich von 0,7 bis 10 eV bestimmt. Es hat sich gezeigt, dass die (effektive) Bandlücke der Misch- und Doppelschichten durch die Komposition abgestimmt werden kann. Nach Lagerung der High-k-Schichten für zwei Monate an Luft konnte ein Alterungseffekt beobachtet werden. Dieser wird auf die weitere Oxidation der dielektrischen Schichten, die durch Sauerstoffdiffusion aus der Umgebungsluft in die High-k-Schichten ermöglicht wird, zurückgeführt.
|
8 |
Ultraschnelle optoelektronische und Materialeigenschaften von Stickstoff-haltigem GaAsSinning, Steffen 04 January 2006 (has links)
This work summarizes properties of nitrogen containing GaAs, which are relevant for optoelectronic application and allow a deeper insight in the physics of this material. In the first part the dependence of the banggap energy of nitrogen implanted GaAs on several process parameters (implanted nitrogen concentration, implantation temperature, annealing duration and temperature) is investigated. The second part focuses on the relaxation dynamics of highly excited carriers. For this, the carrier relaxation dynamics in nitrogen implanted GaAs, in epitaxially grown GaAsN and in (pure) GaAs are investigated by means of pump probe measurements on a femtosecond time scale. The comparision of experimental results to calculated scattering rates leads to relevant informations of scattering mechanisms and electronic properties. / Diese Arbeit widmet sich Eigenschaften von Stickstoff-haltigem Gallium-Arsenid, die sowohl für das physikalische Verständnis als auch für optoelektronische Anwendungen dieses Materials relevant sind. Im ersten Teil dieser Arbeit wird die Abhängigkeit der Bandlücken-Energie von verschiedenen Prozess-Parametern (Stickstoffkonzentration, Implantationstemperatur, Ausheildauer und -temperatur) in Stickstoff-implantiertem GaAs untersucht. Der zweite Teil konzentriert sich auf die Relaxationsdynamik hoch angeregter Ladungsträger. Neben dem oben bereits angesprochenen Material wird in Anrege-Abfrage-Experimenten mit Femtosekunden-Zeitauflösung zusätzlich epitaktisch gewachsenes GaAsN und (Stickstoff-freies) GaAs untersucht. Die Berechnung der Streuraten und der Vergleich mit experimentell gewonnenen Daten liefert wesentliche Informationen über beteiligte Steumechanismen und elektronische Eigenschaften.
|
9 |
Charge transport and energy levels in organic semiconductors / Ladungstransport und Energieniveaus in organischen HalbleiternWidmer, Johannes 25 November 2014 (has links) (PDF)
Organic semiconductors are a new key technology for large-area and flexible thin-film electronics. They are deposited as thin films (sub-nanometer to micrometer) on large-area substrates. The technologically most advanced applications are organic light emitting diodes (OLEDs) and organic photovoltaics (OPV). For the improvement of performance and efficiency, correct modeling of the electronic processes in the devices is essential. Reliable characterization and validation of the electronic properties of the materials is simultaneously required for the successful optimization of devices. Furthermore, understanding the relations between material structures and their key characteristics opens the path for innovative material and device design.
In this thesis, two material characterization methods are developed, respectively refined and applied: a novel technique for measuring the charge carrier mobility μ and a way to determine the ionization energy IE or the electron affinity EA of an organic semiconductor.
For the mobility measurements, a new evaluation approach for space-charge limited current (SCLC) measurements in single carrier devices is developed. It is based on a layer thickness variation of the material under investigation. In the \"potential mapping\" (POEM) approach, the voltage as a function of the device thickness V(d) at a given current density is shown to coincide with the spatial distribution of the electric potential V(x) in the thickest device. On this basis, the mobility is directly obtained as function of the electric field F and the charge carrier density n. The evaluation is model-free, i.e. a model for μ(F, n) to fit the measurement data is not required, and the measurement is independent of a possible injection barrier or potential drop at non-optimal contacts. The obtained μ(F, n) function describes the effective average mobility of free and trapped charge carriers. This approach realistically describes charge transport in energetically disordered materials, where a clear differentiation between trapped and free charges is impossible or arbitrary.
The measurement of IE and EA is performed by characterizing solar cells at varying temperature T. In suitably designed devices based on a bulk heterojunction (BHJ), the open-circuit voltage Voc is a linear function of T with negative slope in the whole measured range down to 180K. The extrapolation to temperature zero V0 = Voc(T → 0K) is confirmed to equal the effective gap Egeff, i.e. the difference between the EA of the acceptor and the IE of the donor. The successive variation of different components of the devices and testing their influence on V0 verifies the relation V0 = Egeff. On this basis, the IE or EA of a material can be determined in a BHJ with a material where the complementary value is known. The measurement is applied to a number of material combinations, confirming, refining, and complementing previously reported values from ultraviolet photo electron spectroscopy (UPS) and inverse photo electron spectroscopy (IPES).
These measurements are applied to small molecule organic semiconductors, including mixed layers. In blends of zinc-phthalocyanine (ZnPc) and C60, the hole mobility is found to be thermally and field activated, as well as increasing with charge density. Varying the mixing ratio, the hole mobility is found to increase with increasing ZnPc content, while the effective gap stays unchanged. A number of further materials and material blends are characterized with respect to hole and electron mobility and the effective gap, including highly diluted donor blends, which have been little investigated before. In all materials, a pronounced field activation of the mobility is observed. The results enable an improved detailed description of the working principle of organic solar cells and support the future design of highly efficient and optimized devices. / Organische Halbleiter sind eine neue Schlüsseltechnologie für großflächige und flexible Dünnschichtelektronik. Sie werden als dünne Materialschichten (Sub-Nanometer bis Mikrometer) auf großflächige Substrate aufgebracht. Die technologisch am weitesten fortgeschrittenen Anwendungen sind organische Leuchtdioden (OLEDs) und organische Photovoltaik (OPV). Zur weiteren Steigerung von Leistungsfähigkeit und Effizienz ist die genaue Modellierung elektronischer Prozesse in den Bauteilen von grundlegender Bedeutung. Für die erfolgreiche Optimierung von Bauteilen ist eine zuverlässige Charakterisierung und Validierung der elektronischen Materialeigenschaften gleichermaßen erforderlich. Außerdem eröffnet das Verständnis der Zusammenhänge zwischen Materialstruktur und -eigenschaften einen Weg für innovative Material- und Bauteilentwicklung.
Im Rahmen dieser Dissertation werden zwei Methoden für die Materialcharakterisierung entwickelt, verfeinert und angewandt: eine neuartige Methode zur Messung der Ladungsträgerbeweglichkeit μ und eine Möglichkeit zur Bestimmung der Ionisierungsenergie IE oder der Elektronenaffinität EA eines organischen Halbleiters.
Für die Beweglichkeitsmessungen wird eine neue Auswertungsmethode für raumladungsbegrenzte Ströme (SCLC) in unipolaren Bauteilen entwickelt. Sie basiert auf einer Schichtdickenvariation des zu charakterisierenden Materials. In einem Ansatz zur räumlichen Abbildung des elektrischen Potentials (\"potential mapping\", POEM) wird gezeigt, dass das elektrische Potential als Funktion der Schichtdicke V(d) bei einer gegebenen Stromdichte dem räumlichen Verlauf des elektrischen Potentials V(x) im dicksten Bauteil entspricht. Daraus kann die Beweglichkeit als Funktion des elektrischen Felds F und der Ladungsträgerdichte n berechnet werden. Die Auswertung ist modellfrei, d.h. ein Modell zum Angleichen der Messdaten ist für die Berechnung von μ(F, n) nicht erforderlich. Die Messung ist außerdem unabhängig von einer möglichen Injektionsbarriere oder einer Potentialstufe an nicht-idealen Kontakten. Die gemessene Funktion μ(F, n) beschreibt die effektive durchschnittliche Beweglichkeit aller freien und in Fallenzuständen gefangenen Ladungsträger. Dieser Zugang beschreibt den Ladungstransport in energetisch ungeordneten Materialien realistisch, wo eine klare Unterscheidung zwischen freien und Fallenzuständen nicht möglich oder willkürlich ist.
Die Messung von IE und EA wird mithilfe temperaturabhängiger Messungen an Solarzellen durchgeführt. In geeigneten Bauteilen mit einem Mischschicht-Heteroübergang (\"bulk heterojunction\" BHJ) ist die Leerlaufspannung Voc im gesamten Messbereich oberhalb 180K eine linear fallende Funktion der Temperatur T. Es kann bestätigt werden, dass die Extrapolation zum Temperaturnullpunkt V0 = Voc(T → 0K) mit der effektiven Energielücke Egeff , d.h. der Differenz zwischen EA des Akzeptor-Materials und IE des Donator-Materials, übereinstimmt. Die systematische schrittweise Variation einzelner Bestandteile der Solarzellen und die Überprüfung des Einflusses auf V0 bestätigen die Beziehung V0 = Egeff. Damit kann die IE oder EA eines Materials bestimmt werden, indem man es in einem BHJ mit einem Material kombiniert, dessen komplementärer Wert bekannt ist. Messungen per Ultraviolett-Photoelektronenspektroskopie (UPS) und inverser Photoelektronenspektroskopie (IPES) werden damit bestätigt, präzisiert und ergänzt.
Die beiden entwickelten Messmethoden werden auf organische Halbleiter aus kleinen Molekülen einschließlich Mischschichten angewandt. In Mischschichten aus Zink-Phthalocyanin (ZnPc) und C60 wird eine Löcherbeweglichkeit gemessen, die sowohl thermisch als auch feld- und ladungsträgerdichteaktiviert ist. Wenn das Mischverhältnis variiert wird, steigt die Löcherbeweglichkeit mit zunehmendem ZnPc-Anteil, während die effektive Energielücke unverändert bleibt. Verschiedene weitere Materialien und Materialmischungen werden hinsichtlich Löcher- und Elektronenbeweglichkeit sowie ihrer Energielücke charakterisiert, einschließlich bisher wenig untersuchter hochverdünnter Donator-Systeme. In allen Materialien wird eine deutliche Feldaktivierung der Beweglichkeit beobachtet. Die Ergebnisse ermöglichen eine verbesserte Beschreibung der detaillierten Funktionsweise organischer Solarzellen und unterstützen die künftige Entwicklung hocheffizienter und optimierter Bauteile.
|
10 |
Charge transport and energy levels in organic semiconductorsWidmer, Johannes 02 October 2014 (has links)
Organic semiconductors are a new key technology for large-area and flexible thin-film electronics. They are deposited as thin films (sub-nanometer to micrometer) on large-area substrates. The technologically most advanced applications are organic light emitting diodes (OLEDs) and organic photovoltaics (OPV). For the improvement of performance and efficiency, correct modeling of the electronic processes in the devices is essential. Reliable characterization and validation of the electronic properties of the materials is simultaneously required for the successful optimization of devices. Furthermore, understanding the relations between material structures and their key characteristics opens the path for innovative material and device design.
In this thesis, two material characterization methods are developed, respectively refined and applied: a novel technique for measuring the charge carrier mobility μ and a way to determine the ionization energy IE or the electron affinity EA of an organic semiconductor.
For the mobility measurements, a new evaluation approach for space-charge limited current (SCLC) measurements in single carrier devices is developed. It is based on a layer thickness variation of the material under investigation. In the \"potential mapping\" (POEM) approach, the voltage as a function of the device thickness V(d) at a given current density is shown to coincide with the spatial distribution of the electric potential V(x) in the thickest device. On this basis, the mobility is directly obtained as function of the electric field F and the charge carrier density n. The evaluation is model-free, i.e. a model for μ(F, n) to fit the measurement data is not required, and the measurement is independent of a possible injection barrier or potential drop at non-optimal contacts. The obtained μ(F, n) function describes the effective average mobility of free and trapped charge carriers. This approach realistically describes charge transport in energetically disordered materials, where a clear differentiation between trapped and free charges is impossible or arbitrary.
The measurement of IE and EA is performed by characterizing solar cells at varying temperature T. In suitably designed devices based on a bulk heterojunction (BHJ), the open-circuit voltage Voc is a linear function of T with negative slope in the whole measured range down to 180K. The extrapolation to temperature zero V0 = Voc(T → 0K) is confirmed to equal the effective gap Egeff, i.e. the difference between the EA of the acceptor and the IE of the donor. The successive variation of different components of the devices and testing their influence on V0 verifies the relation V0 = Egeff. On this basis, the IE or EA of a material can be determined in a BHJ with a material where the complementary value is known. The measurement is applied to a number of material combinations, confirming, refining, and complementing previously reported values from ultraviolet photo electron spectroscopy (UPS) and inverse photo electron spectroscopy (IPES).
These measurements are applied to small molecule organic semiconductors, including mixed layers. In blends of zinc-phthalocyanine (ZnPc) and C60, the hole mobility is found to be thermally and field activated, as well as increasing with charge density. Varying the mixing ratio, the hole mobility is found to increase with increasing ZnPc content, while the effective gap stays unchanged. A number of further materials and material blends are characterized with respect to hole and electron mobility and the effective gap, including highly diluted donor blends, which have been little investigated before. In all materials, a pronounced field activation of the mobility is observed. The results enable an improved detailed description of the working principle of organic solar cells and support the future design of highly efficient and optimized devices.:1. Introduction
2. Organic semiconductors and devices
2.1. Organic semiconductors
2.1.1. Conjugated π system
2.1.2. Small molecules and polymers
2.1.3. Disorder in amorphous materials
2.1.4. Polarons
2.1.5. Polaron hopping
2.1.6. Fermi-Dirac distribution and Fermi level
2.1.7. Quasi-Fermi levels
2.1.8. Trap states
2.1.9. Doping
2.1.10. Excitons
2.2. Interfaces and blend layers
2.2.1. Interface dipoles
2.2.2. Energy level bending
2.2.3. Injection from metal into semiconductor, and extraction
2.2.4. Excitons at interfaces
2.3. Charge transport and recombination in organic semiconductors
2.3.1. Drift transport
2.3.2. Charge carrier mobility
2.3.3. Thermally activated transport
2.3.4. Diffusion transport
2.3.5. Drift-diffusion transport
2.3.6. Space-charge limited current
2.3.7. Recombination
2.4. Mobility measurement
2.4.1. SCLC and TCLC
2.4.2. Time of flight
2.4.3. Organic field effect transistors
2.4.4. CELIV
2.5. Organic solar cells
2.5.1. Exciton diffusion towards the interface
2.5.2. Dissociation of CT states
2.5.3. CT recombination
2.5.4. Flat and bulk heterojunction
2.5.5. Transport layers
2.5.6. Thin film optics
2.5.7. Current-voltage characteristics and equivalent circuit
2.5.8. Solar cell efficiency
2.5.9. Limits of efficiency
2.5.10. Correct solar cell characterization
2.5.11. The \"O-Factor\"
3. Materials and experimental methods
3.1. Materials
3.2. Device fabrication and layout
3.2.1. Layer deposition
3.2.2. Encapsulation
3.2.3. Homogeneity of layer thickness on a wafer
3.2.4. Device layout
3.3. Characterization
3.3.1. Electrical characterization
3.3.2. Sample illumination
3.3.3. Temperature dependent characterization
3.3.4. UPS
4. Simulations
5.1. Design of single carrier devices
5.1.1. General design requirements
5.1.2. Single carrier devices for space-charge limited current
5.1.3. Ohmic regime
5.1.4. Design of injection and extraction layers
5.2. Advanced evaluation of SCLC – potential mapping
5.2.1. Potential mapping by thickness variation
5.2.2. Further evaluation of the transport profile
5.2.3. Injection into and extraction from single carrier devices
5.2.4. Majority carrier approximation
5.3. Proof of principle: POEM on simulated data
5.3.1. Constant mobility
5.3.2. Field dependent mobility
5.3.3. Field and charge density activated mobility
5.3.4. Conclusion
5.4. Application: Transport characterization in organic semiconductors
5.4.1. Hole transport in ZnPc:C60
5.4.2. Hole transport in ZnPc:C60 – temperature variation
5.4.3. Hole transport in ZnPc:C60 – blend ratio variation
5.4.4. Hole transport in ZnPc:C70
5.4.5. Hole transport in neat ZnPc
5.4.6. Hole transport in F4-ZnPc:C60
5.4.7. Hole transport in DCV-5T-Me33:C60
5.4.8. Electron transport in ZnPc:C60
5.4.9. Electron transport in neat Bis-HFl-NTCDI
5.5. Summary and discussion of the results
5.5.1. Phthalocyanine:C60 blends
5.5.2. DCV-5T-Me33:C60
5.5.3. Conclusion
6. Organic solar cell characteristics: the influence of temperature
6.1. ZnPc:C60 solar cells
6.1.1. Temperature variation
6.1.2. Illumination intensity variation
6.2. Voc in flat and bulk heterojunction organic solar cells
6.2.1. Qualitative difference in Voc(I, T)
6.2.2. Interpretation of Voc(I, T)
6.3. BHJ stoichiometry variation
6.3.1. Voc upon variation of stoichiometry and contact layer
6.3.2. V0 upon stoichiometry variation
6.3.3. Low donor content stoichiometry
6.3.4. Conclusion from stoichiometry variation
6.4. Transport material variation
6.4.1. HTM variation
6.4.2. ETM variation
6.5. Donor:acceptor material variation
6.5.1. Donor variation
6.5.2. Acceptor variation
6.6. Conclusion
7. Summary and outlook
7.1. Summary
7.2. Outlook
A. Appendix
A.1. Energy pay-back of this thesis
A.2. Tables and registers / Organische Halbleiter sind eine neue Schlüsseltechnologie für großflächige und flexible Dünnschichtelektronik. Sie werden als dünne Materialschichten (Sub-Nanometer bis Mikrometer) auf großflächige Substrate aufgebracht. Die technologisch am weitesten fortgeschrittenen Anwendungen sind organische Leuchtdioden (OLEDs) und organische Photovoltaik (OPV). Zur weiteren Steigerung von Leistungsfähigkeit und Effizienz ist die genaue Modellierung elektronischer Prozesse in den Bauteilen von grundlegender Bedeutung. Für die erfolgreiche Optimierung von Bauteilen ist eine zuverlässige Charakterisierung und Validierung der elektronischen Materialeigenschaften gleichermaßen erforderlich. Außerdem eröffnet das Verständnis der Zusammenhänge zwischen Materialstruktur und -eigenschaften einen Weg für innovative Material- und Bauteilentwicklung.
Im Rahmen dieser Dissertation werden zwei Methoden für die Materialcharakterisierung entwickelt, verfeinert und angewandt: eine neuartige Methode zur Messung der Ladungsträgerbeweglichkeit μ und eine Möglichkeit zur Bestimmung der Ionisierungsenergie IE oder der Elektronenaffinität EA eines organischen Halbleiters.
Für die Beweglichkeitsmessungen wird eine neue Auswertungsmethode für raumladungsbegrenzte Ströme (SCLC) in unipolaren Bauteilen entwickelt. Sie basiert auf einer Schichtdickenvariation des zu charakterisierenden Materials. In einem Ansatz zur räumlichen Abbildung des elektrischen Potentials (\"potential mapping\", POEM) wird gezeigt, dass das elektrische Potential als Funktion der Schichtdicke V(d) bei einer gegebenen Stromdichte dem räumlichen Verlauf des elektrischen Potentials V(x) im dicksten Bauteil entspricht. Daraus kann die Beweglichkeit als Funktion des elektrischen Felds F und der Ladungsträgerdichte n berechnet werden. Die Auswertung ist modellfrei, d.h. ein Modell zum Angleichen der Messdaten ist für die Berechnung von μ(F, n) nicht erforderlich. Die Messung ist außerdem unabhängig von einer möglichen Injektionsbarriere oder einer Potentialstufe an nicht-idealen Kontakten. Die gemessene Funktion μ(F, n) beschreibt die effektive durchschnittliche Beweglichkeit aller freien und in Fallenzuständen gefangenen Ladungsträger. Dieser Zugang beschreibt den Ladungstransport in energetisch ungeordneten Materialien realistisch, wo eine klare Unterscheidung zwischen freien und Fallenzuständen nicht möglich oder willkürlich ist.
Die Messung von IE und EA wird mithilfe temperaturabhängiger Messungen an Solarzellen durchgeführt. In geeigneten Bauteilen mit einem Mischschicht-Heteroübergang (\"bulk heterojunction\" BHJ) ist die Leerlaufspannung Voc im gesamten Messbereich oberhalb 180K eine linear fallende Funktion der Temperatur T. Es kann bestätigt werden, dass die Extrapolation zum Temperaturnullpunkt V0 = Voc(T → 0K) mit der effektiven Energielücke Egeff , d.h. der Differenz zwischen EA des Akzeptor-Materials und IE des Donator-Materials, übereinstimmt. Die systematische schrittweise Variation einzelner Bestandteile der Solarzellen und die Überprüfung des Einflusses auf V0 bestätigen die Beziehung V0 = Egeff. Damit kann die IE oder EA eines Materials bestimmt werden, indem man es in einem BHJ mit einem Material kombiniert, dessen komplementärer Wert bekannt ist. Messungen per Ultraviolett-Photoelektronenspektroskopie (UPS) und inverser Photoelektronenspektroskopie (IPES) werden damit bestätigt, präzisiert und ergänzt.
Die beiden entwickelten Messmethoden werden auf organische Halbleiter aus kleinen Molekülen einschließlich Mischschichten angewandt. In Mischschichten aus Zink-Phthalocyanin (ZnPc) und C60 wird eine Löcherbeweglichkeit gemessen, die sowohl thermisch als auch feld- und ladungsträgerdichteaktiviert ist. Wenn das Mischverhältnis variiert wird, steigt die Löcherbeweglichkeit mit zunehmendem ZnPc-Anteil, während die effektive Energielücke unverändert bleibt. Verschiedene weitere Materialien und Materialmischungen werden hinsichtlich Löcher- und Elektronenbeweglichkeit sowie ihrer Energielücke charakterisiert, einschließlich bisher wenig untersuchter hochverdünnter Donator-Systeme. In allen Materialien wird eine deutliche Feldaktivierung der Beweglichkeit beobachtet. Die Ergebnisse ermöglichen eine verbesserte Beschreibung der detaillierten Funktionsweise organischer Solarzellen und unterstützen die künftige Entwicklung hocheffizienter und optimierter Bauteile.:1. Introduction
2. Organic semiconductors and devices
2.1. Organic semiconductors
2.1.1. Conjugated π system
2.1.2. Small molecules and polymers
2.1.3. Disorder in amorphous materials
2.1.4. Polarons
2.1.5. Polaron hopping
2.1.6. Fermi-Dirac distribution and Fermi level
2.1.7. Quasi-Fermi levels
2.1.8. Trap states
2.1.9. Doping
2.1.10. Excitons
2.2. Interfaces and blend layers
2.2.1. Interface dipoles
2.2.2. Energy level bending
2.2.3. Injection from metal into semiconductor, and extraction
2.2.4. Excitons at interfaces
2.3. Charge transport and recombination in organic semiconductors
2.3.1. Drift transport
2.3.2. Charge carrier mobility
2.3.3. Thermally activated transport
2.3.4. Diffusion transport
2.3.5. Drift-diffusion transport
2.3.6. Space-charge limited current
2.3.7. Recombination
2.4. Mobility measurement
2.4.1. SCLC and TCLC
2.4.2. Time of flight
2.4.3. Organic field effect transistors
2.4.4. CELIV
2.5. Organic solar cells
2.5.1. Exciton diffusion towards the interface
2.5.2. Dissociation of CT states
2.5.3. CT recombination
2.5.4. Flat and bulk heterojunction
2.5.5. Transport layers
2.5.6. Thin film optics
2.5.7. Current-voltage characteristics and equivalent circuit
2.5.8. Solar cell efficiency
2.5.9. Limits of efficiency
2.5.10. Correct solar cell characterization
2.5.11. The \"O-Factor\"
3. Materials and experimental methods
3.1. Materials
3.2. Device fabrication and layout
3.2.1. Layer deposition
3.2.2. Encapsulation
3.2.3. Homogeneity of layer thickness on a wafer
3.2.4. Device layout
3.3. Characterization
3.3.1. Electrical characterization
3.3.2. Sample illumination
3.3.3. Temperature dependent characterization
3.3.4. UPS
4. Simulations
5.1. Design of single carrier devices
5.1.1. General design requirements
5.1.2. Single carrier devices for space-charge limited current
5.1.3. Ohmic regime
5.1.4. Design of injection and extraction layers
5.2. Advanced evaluation of SCLC – potential mapping
5.2.1. Potential mapping by thickness variation
5.2.2. Further evaluation of the transport profile
5.2.3. Injection into and extraction from single carrier devices
5.2.4. Majority carrier approximation
5.3. Proof of principle: POEM on simulated data
5.3.1. Constant mobility
5.3.2. Field dependent mobility
5.3.3. Field and charge density activated mobility
5.3.4. Conclusion
5.4. Application: Transport characterization in organic semiconductors
5.4.1. Hole transport in ZnPc:C60
5.4.2. Hole transport in ZnPc:C60 – temperature variation
5.4.3. Hole transport in ZnPc:C60 – blend ratio variation
5.4.4. Hole transport in ZnPc:C70
5.4.5. Hole transport in neat ZnPc
5.4.6. Hole transport in F4-ZnPc:C60
5.4.7. Hole transport in DCV-5T-Me33:C60
5.4.8. Electron transport in ZnPc:C60
5.4.9. Electron transport in neat Bis-HFl-NTCDI
5.5. Summary and discussion of the results
5.5.1. Phthalocyanine:C60 blends
5.5.2. DCV-5T-Me33:C60
5.5.3. Conclusion
6. Organic solar cell characteristics: the influence of temperature
6.1. ZnPc:C60 solar cells
6.1.1. Temperature variation
6.1.2. Illumination intensity variation
6.2. Voc in flat and bulk heterojunction organic solar cells
6.2.1. Qualitative difference in Voc(I, T)
6.2.2. Interpretation of Voc(I, T)
6.3. BHJ stoichiometry variation
6.3.1. Voc upon variation of stoichiometry and contact layer
6.3.2. V0 upon stoichiometry variation
6.3.3. Low donor content stoichiometry
6.3.4. Conclusion from stoichiometry variation
6.4. Transport material variation
6.4.1. HTM variation
6.4.2. ETM variation
6.5. Donor:acceptor material variation
6.5.1. Donor variation
6.5.2. Acceptor variation
6.6. Conclusion
7. Summary and outlook
7.1. Summary
7.2. Outlook
A. Appendix
A.1. Energy pay-back of this thesis
A.2. Tables and registers
|
Page generated in 0.0408 seconds