• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 11
  • 11
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ultimate capacity of offshore platform conductor strings /

McGowan, David, January 1991 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1991. / Vita. Abstract. Includes bibliographical references (leaves 88-89). Also available via the Internet.
2

Ultimate capacity of offshore platform conductor strings

McGowan, David 17 March 2010 (has links)
The ultimate capacity of offshore platform conductor strings is studied. The unique way in which conductors are loaded is described and the various design methods that exist are presented. Previous research in the field of tubular member behavior is also reviewed. The results of seven experimental tests are evaluated and compared with the existing conductor design criteria. The test matrix calls for various amounts of lateral loading to be imposed on the conductor system. Axial load, applied to simulate the weight of inner casings, is then applied until failure. Results indicate that internally applied axial loads do not induce stability related failure in the outer conductor. Additionally, the design internal moment, which is based on an inner casing being as eccentric as possible, accurately represents the upper limit for the bending moment observed in the experimental tests. The flexural stiffness of the inner casing serves to strengthen the conductor system. Therefore, a design method that considers the strength of the outer conductor and the inner casings is recommended. / Master of Science
3

Infrared Spectroscopic Measurement of Titanium Dioxide Nanoparticle Shallow Trap State Energies

Burrows, Steven Preston 19 March 2010 (has links)
Within the "forbidden" range of electron energies between the valence and conduction bands of titanium dioxide, crystal lattice irregularities lead to the formation of electron trapping sites. These sites are known as shallow trap states, where "shallow" refers to the close energy proximity of those features to the bottom of the semiconductor conduction band. For wide bandgap semiconductors like titanium dioxide, shallow electron traps are the principle route for thermal excitation of electrons into the conduction band. The studies described here employ a novel infrared spectroscopic approach to determine the energy of shallow electron traps in titanium dioxide nanoparticles. Mobile electrons within the conduction band of semiconductors are known to absorb infrared radiation. As those electrons absorb the infrared photons, transitions within the continuum of the conduction band produce a broad spectral signal across the entire mid-infrared range. A Mathematical expression based upon Fermi–Dirac statistics was derived to correlate the temperature of the particles to the population of charge carriers, as measured through the infrared absorbance. The primary variable of interest in the Fermi – Dirac expression is the energy difference between the shallow trap states and the conduction band. Fitting data sets consisting of titanium dioxide nanoparticle temperatures and their associated infrared spectra, over a defined frequency range, to the Fermi–Dirac expression is used to determine the shallow electron trap state energy. / Master of Science
4

Novel correlated quantum phases in moiré transition metal dichalcogenides

Ghiotto, Augusto January 2023 (has links)
In narrow electron bands in which the Coulomb interaction energy becomes comparable to the bandwidth, interactions can drive new quantum phases. In this dissertation, we achieve narrow bands by twisting two atomically thin layers of the semiconducting van der Waals material WSe₂. The resulting moiré potential from the twist angle modulates the electronic bands, yielding minibands of tens of meV on the valence band. We perform transport measurements at cryogenic temperatures and observe signatures of collective phases over twist angles that range from 4 to 5.1°. At half-band filling, a correlated insulator appeared that is tunable with both twist angle and displacement field. Near the boundary between ordered and disordered quantum phases, several experiments have demonstrated metallic behaviour that defies the Landau Fermi paradigm. We find that the metal-insulator transition as a function of both density and displacement field is continuous. At the metal–insulator boundary, the resistivity displays strange metal behaviour at low temperatures, with dissipation comparable to that at the Planckian limit. Further into the metallic phase, Fermi liquid behaviour is recovered at low temperature, and this evolves into a quantum critical fan at intermediate temperatures, before eventually reaching an anomalous saturated regime near room temperature. An analysis of the residual resistivity indicates the presence of strong quantum fluctuations in the insulating phase. We further show via magnetotransport measurements that new correlated electronic phases can exist independent of moiré commensurability, and are instead driven by weak interactions in twisted WSe₂. The first of these phases is an antiferromagnetic metal that is driven by proximity to the van Hove singularity (vHS), which trails a range of incommensurate dopings. The temperature, magnetic field and density dependence of the Hall effect carry signatures of the reconstructed Fermi surface due to itinerant magnetic ordering. The second is an excitonic metal-insulator phase that exists at high external magnetic field in the vicinity of half-filling of the moiré superlattice. For a 4.2° sample, magnetic field dependence of the longitudinal resistance shows metallic behavior at fields above 5 T, but transitions to an insulating state above ∼ 24 T. A detailed analysis of of the Landau fans and the high field 𝝆_𝜘𝛾 near the gap rules out the possibility of a trivial insulator. We propose an Ising excitonic insulator as the most likely scenario. Moreover, in the electron-imbalanced excitonic metal, a set of correlated Landau levels emerge. The observation of tunable collective phases in a simple band, which hosts only two holes per unit cell at full filling, establishes twisted bilayer transition metal dichalcogenides as an ideal platform to study correlated physics in two dimensions on a triangular lattice.
5

Implementation and Optimization of an Inverse Photoemission Spectroscopy Setup

Gina, Ervin 01 January 2012 (has links)
Inverse photoemission spectroscopy (IPES) is utilized for determining the unoccupied electron states of materials. It is a complementary technique to the widely used photoemission spectroscopy (PES) as it analyzes what PES cannot, the states above the Fermi energy. This method is essential to investigating the structure of a solid and its states. IPES has a broad range of uses and is only recently being utilized. This thesis describes the setup, calibration and operation of an IPES experiment. The IPES setup consists of an electron gun which emits electrons towards a sample, where photons are released, which are measured in isochromat mode via a photon detector of a set energy bandwidth. By varying the electron energy at the source, a spectrum of the unoccupied density of states can be obtained. Since IPES is not commonly commercially available the design consists of many custom made components. The photon detector operates as a bandpass filter with a mixture of acetone/argon and a CaF2 window setting the cutoff energies. The counter electronics consist of a pre-amplifier, amplifier and analyzer to detect the count rate at each energy level above the Fermi energy. Along with designing the hardware components, a Labview program was written to capture and log the data for further analysis. The software features several operating modes including automated scanning which allows the user to enter the desired scan parameters and the program will scan the sample accordingly. Also implemented in the program is the control of various external components such as the electron gun and high voltage power supply. The new setup was tested for different gas mixtures and an optimum ratio was determined. Subsequently, IPES scans of several sample materials were performed for testing and optimization. A scan of Au was utilized for the determination of the Fermi edge energy and for comparison to literature spectra. The Fermi edge energy was then used in a measurement of indium tin oxide (ITO) determining the conduction band onset. This allowed the determination of the "transfer gap" of ITO. Future experiments will allow further application of IPES on materials and interfaces where characterization of their electronic structure is desired.
6

Improving Performance in Cadmium Telluride Solar Cells: From Fabrication to Understanding the Pathway Towards 25% Efficiency

Liyanage, Geethika Kaushalya January 2021 (has links)
No description available.
7

Photoelectrochemical Investigations of Semiconductor Nanoparticles and Their Application to Solar Cells

Poppe, J., Hickey, Stephen G., Eychmüller, A. January 2014 (has links)
No / The objective of this review is to provide an overview concerning what the authors believe to be the most important photoelectrochemical techniques for the study of semiconductor nanoparticles. After a short historical background and a brief introduction to the area of photoelectrochemistry, the working principles and experimental setups of the various static and dynamic techniques are presented. Experimental details which are of crucial importance for their correct execution are emphasized, and applications of the techniques as found in the recent research literature as applied to semiconductor nanoparticles are illustrated.
8

Probing the Dynamics of Conduction Band Electrons and Adsorbed-CO2 Ionic Species through Infrared Spectroscopy

King, Jaelynne Alaya-Louise 28 July 2022 (has links)
No description available.
9

Photoelectrochemical studies of dye-sensitized solar cells using organic dyes

Marinado, Tannia January 2009 (has links)
The dye-sensitized solar cell (DSC) is a promising efficient low-cost molecular photovoltaic device. One of the key components in DSCs is the dye, as it is responsible for the capture of sunlight. State-of-the-art DSC devices, based on ruthenium dyes, show record efficiencies of 10-12 %. During the last decade, metal-free organic dyes have been extensively explored as sensitizers for DSC application. The use of organic dyes is particularly attractive as it enables easy structural modifications, due to fairly short synthetic routes and reduced material cost. Novel dye should in addition to the light-harvesting properties also be compatible with the DSC components. In this thesis, a series of new organic dyes are investigated, both when integrated in the DSC device and as individual components. The evaluation methods consisted of different electrochemical and photoelectrochemical techniques. Whereas the light-harvesting properties of the dyes were fairly easily improved, the behavior of the dye integrated in the DSC showed less predictable photovoltaic results. The dye series studied in Papers II and IV revealed that their dye energetics limited vital electron-transfer processes, the dye regeneration (Paper II) and injection quantum yield (Paper IV). Further, in Papers III-VI, it was observed that different dye structures seemed to alter the interfacial electron recombination with the electrolyte. In addition to the dye structure sterics, some organic dyes appear to enhance the interfacial recombination, possibly due to specific dye-redox acceptor interaction (Paper V). The impact of dye sterical modifications versus the use of coadsorbent was explored in Paper VI. The dye layer properties in the presence and absence of various coadsorbents were further investigated in Paper VII. The core of this thesis is the identification of the processes and properties limiting the performance of the DSC device, aiming at an overall understanding of the compatibility between the DSC components and novel organic dyes. / QC 20100730
10

Charge transport and energy levels in organic semiconductors / Ladungstransport und Energieniveaus in organischen Halbleitern

Widmer, Johannes 25 November 2014 (has links) (PDF)
Organic semiconductors are a new key technology for large-area and flexible thin-film electronics. They are deposited as thin films (sub-nanometer to micrometer) on large-area substrates. The technologically most advanced applications are organic light emitting diodes (OLEDs) and organic photovoltaics (OPV). For the improvement of performance and efficiency, correct modeling of the electronic processes in the devices is essential. Reliable characterization and validation of the electronic properties of the materials is simultaneously required for the successful optimization of devices. Furthermore, understanding the relations between material structures and their key characteristics opens the path for innovative material and device design. In this thesis, two material characterization methods are developed, respectively refined and applied: a novel technique for measuring the charge carrier mobility μ and a way to determine the ionization energy IE or the electron affinity EA of an organic semiconductor. For the mobility measurements, a new evaluation approach for space-charge limited current (SCLC) measurements in single carrier devices is developed. It is based on a layer thickness variation of the material under investigation. In the \"potential mapping\" (POEM) approach, the voltage as a function of the device thickness V(d) at a given current density is shown to coincide with the spatial distribution of the electric potential V(x) in the thickest device. On this basis, the mobility is directly obtained as function of the electric field F and the charge carrier density n. The evaluation is model-free, i.e. a model for μ(F, n) to fit the measurement data is not required, and the measurement is independent of a possible injection barrier or potential drop at non-optimal contacts. The obtained μ(F, n) function describes the effective average mobility of free and trapped charge carriers. This approach realistically describes charge transport in energetically disordered materials, where a clear differentiation between trapped and free charges is impossible or arbitrary. The measurement of IE and EA is performed by characterizing solar cells at varying temperature T. In suitably designed devices based on a bulk heterojunction (BHJ), the open-circuit voltage Voc is a linear function of T with negative slope in the whole measured range down to 180K. The extrapolation to temperature zero V0 = Voc(T → 0K) is confirmed to equal the effective gap Egeff, i.e. the difference between the EA of the acceptor and the IE of the donor. The successive variation of different components of the devices and testing their influence on V0 verifies the relation V0 = Egeff. On this basis, the IE or EA of a material can be determined in a BHJ with a material where the complementary value is known. The measurement is applied to a number of material combinations, confirming, refining, and complementing previously reported values from ultraviolet photo electron spectroscopy (UPS) and inverse photo electron spectroscopy (IPES). These measurements are applied to small molecule organic semiconductors, including mixed layers. In blends of zinc-phthalocyanine (ZnPc) and C60, the hole mobility is found to be thermally and field activated, as well as increasing with charge density. Varying the mixing ratio, the hole mobility is found to increase with increasing ZnPc content, while the effective gap stays unchanged. A number of further materials and material blends are characterized with respect to hole and electron mobility and the effective gap, including highly diluted donor blends, which have been little investigated before. In all materials, a pronounced field activation of the mobility is observed. The results enable an improved detailed description of the working principle of organic solar cells and support the future design of highly efficient and optimized devices. / Organische Halbleiter sind eine neue Schlüsseltechnologie für großflächige und flexible Dünnschichtelektronik. Sie werden als dünne Materialschichten (Sub-Nanometer bis Mikrometer) auf großflächige Substrate aufgebracht. Die technologisch am weitesten fortgeschrittenen Anwendungen sind organische Leuchtdioden (OLEDs) und organische Photovoltaik (OPV). Zur weiteren Steigerung von Leistungsfähigkeit und Effizienz ist die genaue Modellierung elektronischer Prozesse in den Bauteilen von grundlegender Bedeutung. Für die erfolgreiche Optimierung von Bauteilen ist eine zuverlässige Charakterisierung und Validierung der elektronischen Materialeigenschaften gleichermaßen erforderlich. Außerdem eröffnet das Verständnis der Zusammenhänge zwischen Materialstruktur und -eigenschaften einen Weg für innovative Material- und Bauteilentwicklung. Im Rahmen dieser Dissertation werden zwei Methoden für die Materialcharakterisierung entwickelt, verfeinert und angewandt: eine neuartige Methode zur Messung der Ladungsträgerbeweglichkeit μ und eine Möglichkeit zur Bestimmung der Ionisierungsenergie IE oder der Elektronenaffinität EA eines organischen Halbleiters. Für die Beweglichkeitsmessungen wird eine neue Auswertungsmethode für raumladungsbegrenzte Ströme (SCLC) in unipolaren Bauteilen entwickelt. Sie basiert auf einer Schichtdickenvariation des zu charakterisierenden Materials. In einem Ansatz zur räumlichen Abbildung des elektrischen Potentials (\"potential mapping\", POEM) wird gezeigt, dass das elektrische Potential als Funktion der Schichtdicke V(d) bei einer gegebenen Stromdichte dem räumlichen Verlauf des elektrischen Potentials V(x) im dicksten Bauteil entspricht. Daraus kann die Beweglichkeit als Funktion des elektrischen Felds F und der Ladungsträgerdichte n berechnet werden. Die Auswertung ist modellfrei, d.h. ein Modell zum Angleichen der Messdaten ist für die Berechnung von μ(F, n) nicht erforderlich. Die Messung ist außerdem unabhängig von einer möglichen Injektionsbarriere oder einer Potentialstufe an nicht-idealen Kontakten. Die gemessene Funktion μ(F, n) beschreibt die effektive durchschnittliche Beweglichkeit aller freien und in Fallenzuständen gefangenen Ladungsträger. Dieser Zugang beschreibt den Ladungstransport in energetisch ungeordneten Materialien realistisch, wo eine klare Unterscheidung zwischen freien und Fallenzuständen nicht möglich oder willkürlich ist. Die Messung von IE und EA wird mithilfe temperaturabhängiger Messungen an Solarzellen durchgeführt. In geeigneten Bauteilen mit einem Mischschicht-Heteroübergang (\"bulk heterojunction\" BHJ) ist die Leerlaufspannung Voc im gesamten Messbereich oberhalb 180K eine linear fallende Funktion der Temperatur T. Es kann bestätigt werden, dass die Extrapolation zum Temperaturnullpunkt V0 = Voc(T → 0K) mit der effektiven Energielücke Egeff , d.h. der Differenz zwischen EA des Akzeptor-Materials und IE des Donator-Materials, übereinstimmt. Die systematische schrittweise Variation einzelner Bestandteile der Solarzellen und die Überprüfung des Einflusses auf V0 bestätigen die Beziehung V0 = Egeff. Damit kann die IE oder EA eines Materials bestimmt werden, indem man es in einem BHJ mit einem Material kombiniert, dessen komplementärer Wert bekannt ist. Messungen per Ultraviolett-Photoelektronenspektroskopie (UPS) und inverser Photoelektronenspektroskopie (IPES) werden damit bestätigt, präzisiert und ergänzt. Die beiden entwickelten Messmethoden werden auf organische Halbleiter aus kleinen Molekülen einschließlich Mischschichten angewandt. In Mischschichten aus Zink-Phthalocyanin (ZnPc) und C60 wird eine Löcherbeweglichkeit gemessen, die sowohl thermisch als auch feld- und ladungsträgerdichteaktiviert ist. Wenn das Mischverhältnis variiert wird, steigt die Löcherbeweglichkeit mit zunehmendem ZnPc-Anteil, während die effektive Energielücke unverändert bleibt. Verschiedene weitere Materialien und Materialmischungen werden hinsichtlich Löcher- und Elektronenbeweglichkeit sowie ihrer Energielücke charakterisiert, einschließlich bisher wenig untersuchter hochverdünnter Donator-Systeme. In allen Materialien wird eine deutliche Feldaktivierung der Beweglichkeit beobachtet. Die Ergebnisse ermöglichen eine verbesserte Beschreibung der detaillierten Funktionsweise organischer Solarzellen und unterstützen die künftige Entwicklung hocheffizienter und optimierter Bauteile.

Page generated in 0.1136 seconds