• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Towards macroscopic modeling of electro-thermo-mechanical couplings in PEDOT/PSS: Modeling of moisture absorption kinetics

Zhanshayeva, Lyazzat 07 1900 (has links)
Organic conducting polymer, poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS), is widely recognized for its electro-actuation mechanism and is used in flexible electronics. Its high potential as actuator is based on a strong coupling between chemical, mechanical and electrical properties which directly depends on external stimuli. There is no model today to describe the interplay between moisture absorption, mechanical expansion and electrical stimulus. Elucidating the role of each component in the effective actuation properties is needed to further optimize and tailor such materials. The objective of this thesis is to develop a macroscopic model to describe water sorption kinetics of the PEDOT:PSS film. We used gravimetric analysis of pure PEDOT:PSS film of three different thicknesses to investigate absorption kinetics over a broad range of temperatures and relative humidity. Our results revealed that the moisture uptake of PEDOT:PSS film does not follow Fickian diffusion law due to the retained amount of water after desorption process. We used an existing diffusionreaction model to describe this behavior, and COMSOL Multiphysics and MATLAB software programs to implement it. We observed that the generic model we used in our work could predict polymer behavior with 95% accuracy. However, our model was not able to properly represent the data at very high relative humidity at low temperature, which was attributed to the excessive swelling of the film. Also, we examined a relation between the moisture content of PEDOT:PSS and its mechanical strain and electrical conductivity. The results presented here are the first step towards a general multiphysics electro-thermo-mechanical description of PEDOT:PSS based actuators.
2

Silver nanoprisms in plasmonic organic solar cells / Nanoprismes d'argent dans les cellules solaires organiques plasmoniques

Cao, Zhixiong 15 December 2014 (has links)
On constate une forte demande mondiale d' énergie propre et renouvelable en raison de la consommation rapide des combustibles fossiles non renouvelables et l'effet de serre qui en résulte. Une solution prometteuse pour produire une énergie propre et renouvelable est d'utiliser des cellules solaires pour convertir l' énergie solaire directement en électricité. Comparativement à leurs homologues inorganiques, les cellules solaires organiques (OSCs) sont maintenant intensivement étudiées en raison des avantages tels que le poids léger, la flexibilité, la compatibilité avec les procédés de fabrication à faibles coûts. Malgré ces avantages, l'efficacité de conversion (PCE) des OSCs doit encore être améliorée pour la commercialisation à grande échelle. Les cellules solaires organiques sont réalisées en pile de couches minces comprenant des électrodes, la couche de transport d' électrons, la couche de polymère actif et la couche de transport de trous. Dans cette étude, nous sommes concernés par la couche de PEDOT:PSS qui est couramment utilisée comme une couche tampon entre l'électrode anodique et la couche de polymère actif de cellules solaires organiques. Cette étude vise à intégrer différentes concentrations de nanoprismes (NPSMs) d'argent de taille sub-longueur d'onde dans du PEDOT: PSS afin de profiter de leurs propriétés optiques uniques nées de résonances de plasmons de surface localisées (LSPR) pour améliorer la collecte lumineuse et l'efficacité de génération de charge en optimisant l' absorption et la diffusion de la lumière. Nous avons constaté que les facteurs clés qui contrôlent les performances des cellules solaires plasmoniques comprennent non seulement les propriétés optiques, mais également les propriétés structurelles et électriques des couches hybrides de PEDOT:PSS comprenant des NPSMs d' Ag. D'une part, l'ajout de NPSMs d' Ag conduit ¨¤ (1) une augmentation de l'absorption optique; (2) de la diffusion de la lumière ¨¤ de grands angles ce qui pourrait conduire ¨¤ un meilleur piégeage de la lumière dans les OSCs. D'autre part, (1) la rugosité de surface est augment¨¦e en raison de la formation d'agglomérats de NPSMs d' Ag, ce qui conduit ¨¤ une meilleure efficacité de collecte de charge; (2) la résistance globale des films hybrides est également augment¨¦e en raison de l'excès de PSS introduit par les NPSMs d' Ag incomplètement purifiées, inférieur courant de court-circuit (Jsc) qui en résulte; (3) les Ag NPSMs et leurs agglomérats ¨¤ l'interface PEDOT:PSS/couche photo-active pourraient agir comme des centres de recombinaison, conduisant ¨¤ une réduction de la résistance de shunt, du Jsc et de la tension en circuit ouvert (Voc). Afin de résoudre partiellement l'inconvénient (2) et (3), en intégrant des NPSMs d¡¯Ag davantage purifiés et une petite quantité de glycérol dans le PEDOT:PSS, la résistance des couches hybrides de PEDOT:PSS-Ag-NPSMs peut ¨être réduite à une valeur comparable ou inférieure ¨¤ celles couches vierges. Les futurs progrès en chimie de surface colloïdale et l'optimisation sur le processus d'incorporation des nanoparticules seront nécessaires pour produire des cellules solaires organiques plasmoniques de meilleures performances. / Nowadays there has been a strong global demand for renewable and clean energy due to the rapid consumption of non-renewable fossil fuels and the resulting greenhouse effect. One promising solution to harvest clean and renewable energy is to utilize solar cells to convert the energy of sunlight directly into electricity. Compared to their inorganic counterparts, organic solar cells (OSCs) are now of intensive research interest due to advantages such as light weight, flexibility, the compatibility to low-cost manufacturing processes. Despite these advantages, the power conversion efficiency (PCE) of OSCs still has to be improved for large-scale commercialization. OSCs are made of thin film stacks comprising electrodes, electron transporting layer, active polymer layer and hole transporting layer. In this study, we are concerned with PEDOT:PSS layer which is commonly used as a buffer layer between the anodic electrode and the organic photoactive layer of the OSC thin film stack. We incorporated different concentrations of silver nanoprisms (NPSMs) of sub-wavelength dimension into PEDOT:PSS. The purpose is to take advantage of the unique optical properties of Ag MPSMs arisen from localized surface plasmon resonance (LSPR) to enhance the light harvest and the charge generation efficiency by optimizing absorption and scattering of light in OSCs. We found that the key factors controlling the device performance of plasmonic solar cells include not only the optical properties but also the structural and electrical properties of the resulting hybrid PEDOT:PSS-Ag-NPSM-films. On one hand, the addition of Ag NPSMs led to (1) an increased optical absorption; (2) light scattering at high angles which could possibly lead to more efficient light harvest in OSCs. On the other hand, the following results have been found in the hybrid films: (1) the surface roughness was found to be increased due to the formation of Ag agglomerates, leading to increased charge collection efficiency; (2) the global sheet resistance of the hybrid films also increases due to the excess poly(sodium styrenesulphonate) introduced by incompletely purified Ag NPSMs, resulting in lower short circuit current (Jsc); (3) the Ag nanoprisms and their agglomerates at the PEDOT:PSS/photoactive layer interface could act as recombination centers, leading to reductions in shunt resistance, Jsc and open circuit voltage (Voc). In order to partially counteract the disadvantage (2) and (3), by incorporating further purified Ag NPSMs and/or a small amount of glycerol into PEDOT:PSS, the sheet resistance of hybrid PEDOT:PSS-Ag-NPSM-films was reduced to a resistance value comparable to or lower than that of pristine film.
3

Développement des textiles instrumentés intégrant des électrodes organiques de mesure de bio-potentiel / Development of instrumented textiles incorporating organic electrodes for bio-potential measurements

Ankhili, Amale 03 September 2019 (has links)
Les maladies cardiovasculaires sont les premières causes de mortalités dans le monde. La manière la plus efficace de combattre ces maladies est le suivi en temps réel de l’électrocardiogramme (ECG) qui traduit les signaux électriques générés par les cellules cardiaques. Le signal ECG fournit aux cardiologues toutes les informations nécessaires pour diagnostiquer les pathologies cardiaques. De nos jours, l’électrocardiogramme s’enregistre en cabinet à l’aide d’électrodes cutanées à base d’argent et chlorure de l’argent (Ag/AgCl). Celles-ci ne sont pas conçues pour un usage prolongé et peuvent provoquer des irritations de la peau à cause du gel ionique qui les compose et qui sert à réduire l’impédance de l’interface électrode/peau. Dans cette thèse, des électrodes textiles flexibles fonctionnant sans aucun gel ionique ont été développées en tant qu’alternatives aux électrodes médicales (Ag/AgCl). Notre approche est basée sur la modification d’encres conductrices à base du polymère intrinsèquement conducteur, le poly (3,4-éthylènedioxythiophène) poly(styrènesulfonate) (PEDOT:PSS) compatible avec les substrats textiles choisis. La réalisation des électrodes fait appel à des techniques de fabrication qui peuvent être transférées facilement à l’industrie textile. Des caractérisations ont été mises en places afin d’évaluer la fiabilité de ces systèmes avant et après 50 lavages en machine de laboratoire et domestique. En l’occurrence, la résistivité surfacique des électrodes-capteurs, la modélisation de l’interface électrode/peau, l’analyse du signal ECG en statique et en dynamique, la densité spectrale de puissance du signal ECG, le rapport signal sur bruit (SNR) ont été analysés et comparés à des électrodes commerciales à base d’argent. Comme nos électrodes-capteurs développées possèdent un véritable potentiel clinique et industriel, nous avons également étudié la faisabilité de la connectique et sa durabilité. La solution retenue se compose de deux fils conducteurs en polyamide argenté, existants sur le marché, brodés pour réaliser les connexions entre les électrodes-capteurs textiles et un module électronique flexible à base d’un film composite (polyester-aluminium). De plus deux méthodes d’encapsulation des systèmes ont été également développées en vue de leur protection au lavage et futur commercialisation. / Cardiovascular diseases are the leading cause of death worldwide. The most effective way to combat these diseases is the real-time monitoring of the electrocardiogram (ECG) that reflect the electrical signals generated by the heart cells. The ECG signal provides to cardiologists all the information needed to diagnose heart diseases. So far, the electrocardiogram is recorded by using the cutaneous conventional medical electrodes (Ag/AgCl) based on silver and silver chloride. These electrodes are not destined for long-term use and can provoke skin irritation because of the ionic gel that serves to reduce the impedance of the electrode / skin interface. In this thesis, flexible textile electrodes operating without any ionic gel have been developed as alternatives to medical electrodes (Ag/AgCl). Our approach is based on the modification of conductive inks based on the intrinsically conductive polymer, poly (3,4-ethylenedioxythiophene) poly (styrenesulfonate) (PEDOT: PSS) compatible with selected textile substrates. The realization of the electrodes uses manufacturing techniques that can be easily transferred to the textile industry. Characterizations were set up to evaluate the reliability of these systems before and after 50 washes in laboratory and domestic machines. In this case, the surface resistivity of the electrodes-sensors, the modeling of the electrode/skin interface, the analysis of the ECG signal in static and dynamic, the spectral power density of the ECG signal, the signal-to-noise ratio (SNR) were analyzed and compared to commercial silver-based electrodes. As our developed sensor electrodes have a real clinical and industrial potential, we have also studied the feasibility of the connection and its durability. The chosen solution consists of two silver-plated polyamide threads, which are available on the market, embroidered to make the connections between the textile sensor electrodes and a flexible electronic module based on a composite film (polyester-aluminum). In addition, two encapsulation methods have also been developed to protect systems during washing and to make them ready for the market.
4

Coating of yarn with PEDOT-PSS : An examination of optimal manufacturing parameters in a dip coating production line for conductive yarn.

Florén, Sandra, Pettersson, Alma January 2022 (has links)
Electrically conductive smart textiles are a very interesting area that could be important for the development of smart textiles. Today, conductive yarns and threads are often produced from coveted metals such as silver, copper and gold. These metals require large resources to be extracted and processed into yarns and threads and have a major impact on humans and the environment. One way to reduce the consumption of metals and save resources is to coat yarns of textile materials with electrically conductive polymers. In this study, we will investigate coating yarns with the conductive polymer blend PEDOT-PSS. PEDOT-PSS is extracted from oil, which is a non-renewable raw material, but coating with this polymer dispersion has many other advantages over metals and its production chain. Like coating yarn through a chemical bath produces very little waste, the yarn has a smaller mass, the yarn becomes more flexible, and it is easy to scale up production. However, previous studies have shown that there are some difficulties when it comes to coating yarns with PEDOT-PSS. The coating becomes fragile and brittle and to some extent affects the yarn that is coated in terms of mechanical properties. In this study, its investigated how the yarn is affected by various parameters in the production line, such as drying temperature, the viscosity of the PEDOT-PSS dispersion and the speed of the thread traveling through the production line, to find optimal production parameters that provide a balance between conductive and mechanical properties. We have produced a number of samples, all with different variations of parameters, and investigated how its conductive and mechanical properties are affected to see if there is a pattern and connection between parameters and conductive and mechanical properties on the yarn. The results show that yarn samples made with high viscosity of the PEDOT-PSS dispersion are among the lower range of resistance (with some exceptions), with average values of about 2990 O up to 10300 O, while lower viscosity shows uneven results with average values of about 92,000 O and all the way up to about 6,500,000 O. Most samples with lower measured O values are made with a high drying temperature, but no clear connection could be detected between temperature and end result, nor did the different speeds show any clear connection to the result. For the mechanical properties, it turns out that there is a relationship between result and viscosity as well as result and drying temperature. Samples made with low viscosity and low drying temperature perform best in the mechanical tests, 59.7% to 52.9% elongation and 25 cN / tex to 21 cN / tex. While speeds in this category could not show any connection between the results either. Overall, the results can be summarized as the results of tests show that there are some correlations between the parameters and the properties of the yarn samples and that the viscosity of the PEDOT-PSS dispersion and drying temperature are the most influential parameters. For conductive properties, viscosity has the greatest effect and for mechanical properties, viscosity and temperature have the greatest effect. For conductive properties, high viscosity is good, and for mechanical properties, low temperature and low viscosity are best. The sample with the best combination of test results was tested in a knitting machine but the variant chosen for knitting did not have good enough mechanical properties for the knitting machine used and broke when exposed to the stress from the knitting process. Therefore, the knitting test was not successful, but it was possible to sift out what parameter of the production line that had the greatest impact on the coated yarn properties.
5

Metabolite detection using organic electronic devices for point-of-care diagnostics / Réalisation de dispositifs électroniques organiques pour la détection des métabolites.

Pappa, Anna maria 12 September 2017 (has links)
De nos jours, efficacité et précision des diagnostics médicaux sont des éléments essentiels pour la prévention en termes de santé et permettre une prise en charge rapide des maladies des patients. Les récentes innovations technologiques, particulièrement dans les domaines de la microélectronique et des sciences des matériaux ont permis le développement de nouvelles plateformes personnalisées de diagnostics portatifs. Les matériaux électroniques organiques qui ont déjà par le passé démontré leur potentiel en étant intégrés dans des produits de grande consommation tels que les écrans de smartphones ou encore les cellules solaires montrent un fort potentiel pour une intégration dans des dispositifs biomédicaux. En effet, de par leurs natures et leurs propriétés physiques et chimiques, ils peuvent être à la fois en contact avec les milieux biologiques et constituer l’interface entre les éléments biologiques à l’étude, et les dispositifs électroniques. L’objectif de mes travaux de thèse et d’étudier et évaluer les performances des matériaux organiques électroniques intégrés dans des dispositifs biomédicaux en étudiant leurs interactions avec des milieux biologiques et par l’utilisation et l’optimisation de ces dispositifs permettre la détection de métabolites tel que le glucose ou lactate par exemple. Pendant ma thèse, j’ai notamment créé une plateforme de diagnostics combinant à la fois microfluidique et électronique organique permettant la multi détection de métabolites présents dans des fluides corporels humains, j’ai également conçu des capteurs intégrant des transistors organiques au sein des circuits électroniques classiques afin de détecter la présence des cellules tumorales. D’autres applications biologiques ont également été envisagées telles que la détection d’acides nucléiques par l’utilisation d’une approche simple de biofonctionnalisation. Bien que l’objectif ma thèse était de de créer des capteurs biomédicaux en utilisant une approche in vitro, il pourrait être également possible d’intégrer ces dispositifs « in vivo » ou encore dans des e-textiles. / Rapid and early diagnosis of disease plays a major role in preventative healthcare. Undoubtedly, technological evolutions, particularly in microelectronics and materials science, have made the hitherto utopian scenario of portable, point-of-care personalized diagnostics a reality. Organic electronic materials, having already demonstrated a significant technological maturity with the development of high tech products such as displays for smartphones or portable solar cells, have emerged as especially promising candidates for biomedical applications. Their soft and fuzzy nature allows for an almost seamless interface with the biological milieu rendering these materials ideally capable of bridging the gap between electronics and biology. The aim of this thesis is to explore and validate the capabilities of organic electronic materials and devices in real-world biological sensing applications focusing on metabolite sensing, by combining both the right materials and device engineering. We show proof-of-concept studies including microfluidic integrated organic electronic platforms for multiple metabolite detection in bodily fluids, as well as more complex organic transistor circuits for detection in tumor cell cultures. We finally show the versatility of organic electronic materials and devices by demonstrating other sensing strategies such as nucleic acid detection using a simple biofunctionalization approach. Although the focus is on in vitro metabolite monitoring, the findings generated throughout this work can be extended to a variety of other sensing strategies as well as to applications including on body (wearable) or even in vivo sensing.
6

Study of Rheological Behaviour of Coating Paste containing conductive polymer complex

IQBAL, KASHIF January 2010 (has links)
Conducting polymer coating is the new developing area in the field of advanced textiles. In this project the rheological behaviour of paste containing conducting polymer was studied during formulation to coating application. The literature study is done by keeping all the contents of project in mind and a wide area of conductive polymer, coating methods, binder system and rheology modifier is covered. The rheological behaviour of different fluid containing newtanion and non-newtanion behaviour is discussed for better understanding of the project working. Polyester fabric was coated by knife coating method. In paste formulation, the chemicals used were polyurethane binder with two HEUR based rheology modifiers. A lot of experiments were performed to determine the right amount of rheology modifier alone or in combination for paste formulation and coating application and interesting findings were observed during the experimental work which had been justified in results and analysis. After application, the coated fabric was checked for resistivity. / Program: Magisterutbildning i textilteknologi
7

Polymer electrochromism and surface plasmons combined on metallic diffraction gratings

Garnier, Jérôme January 2008 (has links)
All conducting polymers are potentially electrochromic, owing to the injection of charge carriers that changes their electronic structure and results in a shift of their optical absorption towards higher wavelengths. PEDOT-PSS and PEDOT-S are very promising materials in terms of electrochromic properties, due to the good contrast existing between their doped and undoped forms. However this contrast has to be enhanced in order to design more efficient electrochromic devices, and new solutions should thus be found in order to solve this issue. Surface plasmons are described as electromagnetic waves propagating along the surface between a dielectric and a metal. Coupled to an incident radiation, they create an energy loss in the light transmitted and reflected by the interface. When the metallic surface is periodically corrugated, this absorption phenomenon due to plasmonic resonance occurs at a specific wavelength that depends on several parameters, such as the incidence angle, the dielectric constants of the two media and the grating period. By coating metallic gratings with electrochromic polymers, we may thus be able to trigger a plasmonic absorption at a given wavelength and shift it upon reduction or oxidation of the material. Electrochromic devices consisting of PEDOT-PSS or PEDOT-S spin-deposited on gold and silver gratings were investigated by UV-visible reflectance measurements. The periodically corrugated structures were reproduced from commercial gratings by soft nanolithography and were analyzed by AFM. Some electrochromic cells exhibited new colors or a high shift of the plasmonic resonance upon redox switching of the polymer film. Depending on the step and the nature of the grating employed, this shift could reach 20 nm in the case of PEDOT-PSS and more than 100 nm for PEDOT-S. A theoretical model was found to predict the wavelength of plasmonic excitation and the orientation of the shift.
8

Polymer electrochromism and surface plasmons combined on metallic diffraction gratings

Garnier, Jérôme January 2008 (has links)
<p>All conducting polymers are potentially electrochromic, owing to the injection of charge carriers that changes their electronic structure and results in a shift of their optical absorption towards higher wavelengths. PEDOT-PSS and PEDOT-S are very promising materials in terms of electrochromic properties, due to the good contrast existing between their doped and undoped forms. However this contrast has to be enhanced in order to design more efficient electrochromic devices, and new solutions should thus be found in order to solve this issue.</p><p>Surface plasmons are described as electromagnetic waves propagating along the surface between a dielectric and a metal. Coupled to an incident radiation, they create an energy loss in the light transmitted and reflected by the interface. When the metallic surface is periodically corrugated, this absorption phenomenon due to plasmonic resonance occurs at a specific wavelength that depends on several parameters, such as the incidence angle, the dielectric constants of the two media and the grating period. By coating metallic gratings with electrochromic polymers, we may thus be able to trigger a plasmonic absorption at a given wavelength and shift it upon reduction or oxidation of the material.</p><p>Electrochromic devices consisting of PEDOT-PSS or PEDOT-S spin-deposited on gold and silver gratings were investigated by UV-visible reflectance measurements. The periodically corrugated structures were reproduced from commercial gratings by soft nanolithography and were analyzed by AFM. Some electrochromic cells exhibited new colors or a high shift of the plasmonic resonance upon redox switching of the polymer film. Depending on the step and the nature of the grating employed, this shift could reach 20 nm in the case of PEDOT-PSS and more than 100 nm for PEDOT-S. A theoretical model was found to predict the wavelength of plasmonic excitation and the orientation of the shift.</p>
9

Optimisation des paramètres d'impression pour l'électronique imprimée sur supports souples.

Fenoll, Mathieu 27 June 2007 (has links) (PDF)
L'électronique imprimée prend place à l'interface entre les secteurs des industries graphiques et celui de la microélectronique. Les techniques d'impression industrielles classiques que sont l'héliogravure, la flexographie et l'offset présentent le grand avantage d'une productivité élevée en terme de surface imprimée. Une étape de recherche sur la formulation d'encres spécifiques pigmentaires ou à base de polymères fonctionnels se place au cœur de cette problématique. Ce travail de thèse s'inscrit dans le contexte de l'électronique imprimée avec l'optimisation des différents paramètres de transfert intervenant dans l'impression. De même, l'étude de la rhéologie et la physico-chimie des encres est une étape capitale et indissociable de la caractérisation des états de surface des supports. En effet si chaque procédé d'impression possède ses spécificités en termes de propriétés des encres utilisées, une bonne adéquation encre/support est nécessaire afin d'obtenir une impression ayant les caractéristiques recherchées. <br />Nous avons donc formulé différentes encres polymères conductrices en particulier à base de poly thiophène. Une étude des propriétés de surface et des caractéristiques physiques des différents papiers et plastiques a permis de choisir deux supports tests pour nos impressions. Enfin, une optimisation des paramètres d'impression a démontré l'influence des conditions d'impression sur les caractéristiques des dépôts effectués en particulier en terme de conduction électrique. Un état de l'art et une bibliographie font le point sur les avancées de l'électronique imprimée, ses applications et ses enjeux.
10

Réalisation de dispositifs biomédicaux par impression jet d’encre / Inkjet printed organic electronic devices for biomedical diagnosis

Bihar, Eloïse 19 December 2016 (has links)
De nos jours, le domaine biomédical est en pleine croissance avec le développement de dispositifs thérapeutiques innovants, bas coût, pour le diagnostic, le traitement ou la prévention de maladies chroniques ou cardiovasculaires. Ces dernières années ont connu l’émergence des polymères semi-conducteurs, alternative intéressante aux matériaux inorganiques, présentant des propriétés uniques de conduction ionique et électronique. Tout d’abord, j’ai axé mes travaux de recherche sur le développement et l’optimisation d’une encre conductrice à base de PEDOT:PSS, parfait candidat comme matériau, pour la transduction des signaux biologiques en signaux électriques, compatible avec le process jet d’encre, pour la réalisation de dispositifs imprimés. Puis mes travaux se sont orientés vers la conception et l’étude d’électrodes imprimées sur supports papiers, tatous et textiles permettant des enregistrements long termes d’électrocardiogrammes (ECG) ou électromyogrammes (EMG), présentant des performances similaires aux électrodes commerciales, utilisant un système d’acquisition spécifique pour la mesure d’activités électriques de tissus musculaires. Puis dans un second temps, je me suis penchée sur l’impression sur support papier, de transistors organiques électrochimiques (OECTs) fonctionnalisés, afin de permettre la détection d’éléments biologiques ou chimiques comme l’alcool. Ces travaux proposent une nouvelle voie pour la conception de dispositifs innovants biomédicaux à bas couts, imprimés, permettant la personnalisation des produits pouvant être intégrés dans des dispositifs biomédicaux portables ou dans des vêtements « intelligents ». / With the evolution of microelectronics industry and their direct implementation in the biomedical arena, innovative tools and technologies have come to the fore enabling more reliable and cost-effective treatment. In this thesis I focus on the integration of the conducting polymer PEDOT:PSS with printing technologies toward the realization of performant biomedical devices. In the first part, I focus on the optimization of the conducting ink formulation. Following, I emphasize on the fabrication of inkjet printed PEDOT:PSS based biopotential electrodes on a wide variety of substrates (i.e., paper, textiles, tattoo paper) for use in electrophysiological applications such as electrocardiography (ECG) and electromyography (EMG). Printed electrodes on paper and printed wearable electrodes were fabricated and investigated for long-term ECG recordings. Then, conformable printed tattoo electrodes were fabricated to detect the biceps activity during muscle contraction and the conventional wiring was replaced by a simple contact between the tattoo and a similarly ink-jet printed textile electrode.In the last part, I present the potentiality of inkjet printing method for the realization of organic electrochemical transistor (OECTs) as high performing biomedical devices. A disposable breathalyzer comprised of a printed OECT and modified with alcohol dehydrogenase was used for the direct alcohol detection in breath, enabling future integration with wearable devices for real-time health monitoring. Their compatibility with printing technologies allows the realization of low-cost and large area electronic devices, toward next-generation fully integrated smart biomedical devices.

Page generated in 0.0243 seconds