• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Metabolite detection using organic electronic devices for point-of-care diagnostics / Réalisation de dispositifs électroniques organiques pour la détection des métabolites.

Pappa, Anna maria 12 September 2017 (has links)
De nos jours, efficacité et précision des diagnostics médicaux sont des éléments essentiels pour la prévention en termes de santé et permettre une prise en charge rapide des maladies des patients. Les récentes innovations technologiques, particulièrement dans les domaines de la microélectronique et des sciences des matériaux ont permis le développement de nouvelles plateformes personnalisées de diagnostics portatifs. Les matériaux électroniques organiques qui ont déjà par le passé démontré leur potentiel en étant intégrés dans des produits de grande consommation tels que les écrans de smartphones ou encore les cellules solaires montrent un fort potentiel pour une intégration dans des dispositifs biomédicaux. En effet, de par leurs natures et leurs propriétés physiques et chimiques, ils peuvent être à la fois en contact avec les milieux biologiques et constituer l’interface entre les éléments biologiques à l’étude, et les dispositifs électroniques. L’objectif de mes travaux de thèse et d’étudier et évaluer les performances des matériaux organiques électroniques intégrés dans des dispositifs biomédicaux en étudiant leurs interactions avec des milieux biologiques et par l’utilisation et l’optimisation de ces dispositifs permettre la détection de métabolites tel que le glucose ou lactate par exemple. Pendant ma thèse, j’ai notamment créé une plateforme de diagnostics combinant à la fois microfluidique et électronique organique permettant la multi détection de métabolites présents dans des fluides corporels humains, j’ai également conçu des capteurs intégrant des transistors organiques au sein des circuits électroniques classiques afin de détecter la présence des cellules tumorales. D’autres applications biologiques ont également été envisagées telles que la détection d’acides nucléiques par l’utilisation d’une approche simple de biofonctionnalisation. Bien que l’objectif ma thèse était de de créer des capteurs biomédicaux en utilisant une approche in vitro, il pourrait être également possible d’intégrer ces dispositifs « in vivo » ou encore dans des e-textiles. / Rapid and early diagnosis of disease plays a major role in preventative healthcare. Undoubtedly, technological evolutions, particularly in microelectronics and materials science, have made the hitherto utopian scenario of portable, point-of-care personalized diagnostics a reality. Organic electronic materials, having already demonstrated a significant technological maturity with the development of high tech products such as displays for smartphones or portable solar cells, have emerged as especially promising candidates for biomedical applications. Their soft and fuzzy nature allows for an almost seamless interface with the biological milieu rendering these materials ideally capable of bridging the gap between electronics and biology. The aim of this thesis is to explore and validate the capabilities of organic electronic materials and devices in real-world biological sensing applications focusing on metabolite sensing, by combining both the right materials and device engineering. We show proof-of-concept studies including microfluidic integrated organic electronic platforms for multiple metabolite detection in bodily fluids, as well as more complex organic transistor circuits for detection in tumor cell cultures. We finally show the versatility of organic electronic materials and devices by demonstrating other sensing strategies such as nucleic acid detection using a simple biofunctionalization approach. Although the focus is on in vitro metabolite monitoring, the findings generated throughout this work can be extended to a variety of other sensing strategies as well as to applications including on body (wearable) or even in vivo sensing.
2

Metabolite sensing by ribosome arresting peptides / Détection de métabolites par des peptides d'arrêt ribosomaux

Herrero del valle, Alba 27 November 2019 (has links)
Les bactéries doivent s'adapter rapidement aux modifications de leur environnement en ajustant leur modèle d'expression génétique et leurs activités enzymatiques. Dans la plupart des cas, les variations de leur habitat impliquent de petites molécules que les bactéries peuvent détecter et auxquelles elles peuvent réagir. Le ribosome, la machinerie de la cellule qui catalyse la formation de la liaison peptidique, est capable de détecter les métabolites ou les antibiotiques afin de réguler l'expression des gènes, où le peptide naissant au sein du ribosome est capable d’induire l’arrêt de la traduction. Dans ce mécanisme, le peptide en cours de traduction (peptide d'arrêt) bloque le ribosome en interagissant avec les parois du tunnel ribosomal correspondant à la cavité par laquelle le peptide atteint le cytoplasme. L'arrêt peut dépendre uniquement de la séquence du peptide ou bien nécessiter la liaison d’une petite molécule. L’arrêt du ribosome en cours de traduction contrôle à son tour l'expression sur le même ARNm d'un gène situé en aval. Malgré plusieurs études biochimiques et structurales antérieures, le mécanisme exact de détection de ces petits métabolites par le peptide d’arrêt est encore inconnu. Mon travail de doctorat a porté sur : (1) comprendre comment de petites molécules sont détectées par les peptides d'arrêt ribosomaux, et (2) un cas particulier d'arrêt de la traduction dépendant du ligand : la détection des antibiotiques par des peptides d'arrêt courts.Pour répondre au premier problème, j'ai étudié biochimiquement et structurellement un nouveau peptide d'arrêt (appelé SpeFL) qui détecte l’ornithine (un petit métabolite) et qui est codé en amont de l'opéron speF chez Escherichia coli. La structure cryo-EM que j'ai résolue a révélé comment l’ornithine est détectée de manière très spécifique par un complexe ribosomal en cours de traduction. De plus, j'ai montré que le mécanisme d'induction du gène en aval speF implique un arrêt du ribosome au niveau de speFL empêchant ainsi une terminaison prématurée de la transcription Rho-dépendante.Dans la deuxième partie de ma thèse, je me suis concentrée sur la façon dont un antibiotique ciblant les ribosomes, l'érythromycine, est détecté par un peptide d'arrêt court. L'érythromycine est capable de bloquer la traduction de manière séquence-dépendante, où le motif (+)X(+) est le motif principal de blocage. Des données biochimiques publiées antérieurement suggèrent que l'encombrement stérique et électrostatique causé par le premier acide aminé chargé positivement (+) empêche l'addition du second, arrêtant ainsi le ribosome en cours de traduction. La résolution de la structure cryo-EM d'un ribosome arrêté par un peptide MKFR en présence d'érythromycine suggère le contraire, ce qui ouvre la voie à d'autres recherches sur le sujet. / Bacteria need to rapidly adapt to the changing environment by adjusting their gene expression patterns and enzymatic activities. In most cases, the variations in their habitat involve small molecules that bacteria are able to sense and respond to. The ribosome, the machinery of the cell that catalyzes peptide bond formation, is able to detect metabolites or antibiotics to regulate gene expression via nascent-chain mediated translational arrest. In this mechanism, the peptide that is being translated (arrest peptide) stalls the ribosome by interacting with the walls of the ribosomal tunnel, the cavity through which it reaches the cytoplasm. The arrest may depend solely on the sequence of the peptide or need a small molecule to be triggered. Ribosomal stalling in turn, controls the expression of a gene that is located downstream on the same mRNA. Despite previous biochemical and structural studies, the exact mechanism of sensing of small metabolites by the nascent chain is still unknown. My PhD work focused on: (1) understanding how small molecules are sensed by ribosomal arrest peptides, and (2) a special case of ligand-dependent translational arrest: drug sensing by short arrest peptides.To address the first issue, I studied biochemically and structurally a novel L-ornithine sensing arrest peptide (SpeFL) encoded upstream the speF operon in Escherichia coli. The cryo-EM structure that I solved revealed how a small molecule is sensed by a ribosome nascent chain complex in a highly specific manner. Besides, I showed that the mechanism of induction of the downstream gene speF involves ribosomal arrest at speFL preventing premature Rho-dependent transcriptional termination.On the second part of my thesis, I focused on how a ribosome-targeting antibiotic, erythromycin, is sensed by a short arrest peptide. Erythromycin is able to block translation in a sequence dependent manner, with the (+)X(+) motif being the main stalling motif. Previously published biochemical data suggest that steric and static hindrance caused by the first positively charged amino acid prevents the addition of the second one arresting the ribosome. I solved the cryo-EM structure of a ribosome arrested by an MKFR peptide in the presence of erythromycin that shows otherwise and opens up further investigation on the matter.
3

Succinate receptor 1 inhibits mitochondrial respiration in cancer cells addicted to glutamine

Rabe, Philipp, Liebing, Aenne-Dorothea, Krumbholz, Petra, Kraft, Robert, Stäubert, Claudia 14 February 2022 (has links)
Cancer cells display metabolic alterations to meet the bioenergetic demands for their high proliferation rates. Succinate is a central metabolite of the tricarboxylic acid (TCA) cycle, but was also shown to act as an oncometabolite and to specifically activate the succinate receptor 1 (SUCNR1), which is expressed in several types of cancer. However, functional studies focusing on the connection between SUCNR1 and cancer cell metabolism are still lacking. In the present study, we analyzed the role of SUCNR1 for cancer cell metabolism and survival applying different signal transduction, metabolic and imaging analyses. We chose a gastric, a lung and a pancreatic cancer cell line for which our data revealed functional expression of SUCNR1. Further, presence of glutamine (Gln) caused high respiratory rates and elevated expression of SUCNR1. Knockdown of SUCNR1 resulted in a significant increase of mitochondrial respiration and superoxide production accompanied by an increase in TCA cycle throughput and a reduction of cancer cell survival in the analyzed cancer cell lines. Combination of SUCNR1 knockdown and treatment with the chemotherapeutics cisplatin and gemcitabine further increased cancer cell death. In summary, our data implicates that SUCNR1 is crucial for Gln-addicted cancer cells by limiting TCA cycle throughput, mitochondrial respiration and the production of reactive oxygen species, highlighting its potential as a pharmacological target for cancer treatment.

Page generated in 0.6072 seconds