• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 98
  • 38
  • 17
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 316
  • 316
  • 53
  • 48
  • 39
  • 30
  • 30
  • 29
  • 28
  • 28
  • 27
  • 26
  • 24
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Electrical conductivity studies of cast Al-Si and Al-Si-Mg alloys

Mülazımoğlu, Mehmet Hașim January 1988 (has links)
No description available.
132

Electrical conductivity of polyaphrons (biliquid foams)

Zimmerman, Nancy J. (Nancy Jane) January 1983 (has links)
M.S.
133

The theory and design of switched-mode power transformers for minimum conductor loss

Goad, Stephen D. January 1985 (has links)
A comprehensive and general analysis of the electromagnetic fields, power dissipation, and energy storage within transformer windings is presented. Emphasis is placed on applications in switched-mode power conversion. One-dimensional radial variation of the field quantities is assumed. The first phase of the investigation is for sinusoidal excitation; solutions for the current density and magnetic field intensity are derived and studied in order to develop a fundamental understanding of the basic phenomena. Expressions for the power dissipation and energy storage in both single- and multi-layer windings are then derived which, upon investigation, yield a technique for minimizing the power dissipation by choosing an optimum conductor thickness. Several levels of accuracy, ranging from exact solutions to very simple and physically meaningful series approximations, are defined and examined to determine their usefulness and range of validity. The time-harmonic treatment is generalized to arbitrary periodic exoitation by means of Fourier analysis, resulting in a powerful extension of its applicability to any possible converter topology. Results for several representative waveshapes are presented from which a fundamental dependence cn the waveform bandwidth is discovered. Practical application of the theoretical analysis is considered by developing models for several couon winding types: single and multi-filar round wire, litz wire, and sheet conductors. Experimental results are presented and compared with the theoretical results for each of these cases. Finally, a design procedure is outlined for switched—mode pour transformers which is based on this work. / Ph. D.
134

Molecular origin of enhanced proton conductivity in anhydrous ionic systems

Wojnarowska, Z., Paluch, Krzysztof J., Shoifet, E., Schick, C., Tajber, L., Knapik, J., Wlodarczyk, P., Grzybowska, K., Hensel-Bielowka, S., Verevkin, S.P., Paluch, M. 31 December 2014 (has links)
Yes / Ionic systems with enhanced proton conductivity are widely viewed as promising electrolytes in fuel cells and batteries. Nevertheless, a major challenge toward their commercial applications is determination of the factors controlling the fast proton hopping in anhydrous conditions. To address this issue, we have studied novel proton-conducting materials formed via a chemical reaction of lidocaine base with a series of acids characterized by a various number of proton-active sites. From ambient and high pressure experimental data, we have found that there are fundamental differences in the conducting properties of the examined salts. On the other hand, DFT calculations revealed that the internal proton hopping within the cation structure strongly affects the pathways of mobility of the charge carrier. These findings offer a fresh look on the Grotthuss-type mechanism in protic ionic glasses as well as provide new ideas for the design of anhydrous materials with exceptionally high proton conductivity.
135

Electrical, thermomechanical and reliability modeling of electrically conductive adhesives

Su, Bin 23 December 2005 (has links)
The first part of the dissertation focuses on understanding and modeling the conduction mechanism of conductive adhesives. The contact resistance is measured between silver rods with different coating materials, and the relationship between tunnel resistivity and contact pressure is obtained based on the experimental results. Three dimensional microstructure models and resistor networks are built to simulate electrical conduction in conductive adhesives. The bulk resistivity of conductive adhesives is calculated from the computer-simulated model. The effects of the geometric properties of filler particles, such as size, shape and distribution, on electrical conductivity are studied by the method of factorial design. The second part of the dissertation evaluates the reliability and investigates the failure mechanism of conductive adhesives subjected to fatigue loading, moisture conditioning and drop impacts. In fatigue tests it is found that electrical conduction failure occurs prior to mechanical failure. The experimental data show that electrical fatigue life can be described well by the power law equation. The electrical failure of conductive adhesives in fatigue is due to the impaired epoxy-silver interfacial adhesion. Moisture uptake in conductive adhesives is measured after moisture conditioning and moisture recovery. The fatigue life of conductive adhesives is significantly shortened after moisture conditioning and moisture recovery. The moisture accelerates the debonding of silver flakes from epoxy resin, which results in a reduced fatigue life. Drop tests are performed on test vehicles with conductive adhesive joints. The electrical conduction failure happens at the same time as joint breakage. The drop failure life is found to be correlated with the strain energy caused by the drop impact, and a power law life model is proposed for drop tests. The fracture is found to be interfacial between the conductive adhesive joints and components/substrates. This research provides a comprehensive understanding of the conduction mechanism of conductive adhesives. The computer-simulated modeling approach presents a useful design tool for the conductive adhesive industry. The reliability tests and proposed failure mechanisms are helpful to prevent failure of conductive adhesives in electronic packages. Moreover, the fatigue and impact life models provide tools in product design and failure prediction of conductive adhesives.
136

The current-voltage and noise properties of high temperature superconductor SNS and grain boundary junctions

McGordon, Andrew January 1999 (has links)
No description available.
137

Non-linear behaviour of a Superconducting Quantum Interference Device coupled to a radio frequency oscillator

Murrell, Jonathan Kenneth Jeffrey January 2001 (has links)
No description available.
138

Nanocluster technologies for electronics design

Parker, Andrews James January 2001 (has links)
The work presented in this thesis covers an investigation into the use of metal nanoclusters in nanoelectronics design. Initial studies explored the interactions of the dodecanethiol passivated gold nanocluster, held in solution with toluene, and the native oxide covered silicon surface. Deposition of the clusters is achieved by pipetting u-litre quantities of the solution onto the surface, and allowing the solvent to evaporate leaving the clusters as residue. Patterning of the surface with micron scale photoresist structures prior to cluster exposure, led to the selective aggregation of cluster deposits along the resist boundaries. An extension of this technique, examined the flow of the cluster solution along photoresist structures which extended beyond the solution droplet. Investigation into the electronic properties of nanocluster arrays generated non-linear current-voltage curves, which are explained in terms of two very simple models. These results cast doubt over the suitability of the lateral approach to nanocluster device fabrication, and led to the exploration of vertical device design. Vertical devices, based around -50nm diameter silicon nanopillars with nanoc1usters on top, afford the necessary level of control over all aspects of nanocluster positioning; deposition of a single cluster layer is confined laterally to the pillar cross-section. Initial results of vertical device fabrication, show the considerable promise of this approach to cluster based electronic systems.
139

Magnetic and superconducting phases of heavy fermion compounds

Saxena, Siddharth Shanker January 1998 (has links)
No description available.
140

Electronic characterisation and computer modelling of thin film materials and devices for optoelectronic applications

Zollondz, Jens-Hendrik January 2001 (has links)
No description available.

Page generated in 0.0775 seconds