• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 16
  • 12
  • 10
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 122
  • 122
  • 120
  • 27
  • 24
  • 19
  • 19
  • 19
  • 18
  • 17
  • 15
  • 14
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Insulator aging tests with HVAC and HVDC excitation using the tracking wheel tester

Limbo, Beulah Sepo 12 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2009. / ENGLISH ABSTRACT: Limited research results are available on the aging impacts of surface discharges for High Voltage Direct Current (HVDC) excitation on practical insulators using the Tracking Wheel Tester (TWT) methodology. This thesis gives details of an experimental investigation to compare the aging performance of insulator samples using the TWT for High Voltage Alternating Current (HVAC) and positive and negative polarity HVDC excitation. Two series of tests were performed. The first series of tests evaluated the aging of six insulator rods, namely three Room Temperature Vulcanized Silicone Rubber (RTV SR) coated glass samples and three uncoated glass samples. Three creepage distances were used for each of the test materials, namely 277 mm, 346 mm and 433 mm. The tests were conducted with HVAC excitation and the test methodology described in the IEC 61302 standard. The second series of tests involved the testing of actual insulator samples. The test voltage and conductivity of the salt water solution were also adapted. Six insulators from different manufacturers, representing different materials and specific creepage distances, were tested with HVAC and positive and negative polarity HVDC excitation. The test samples consisted of Ethylene Propylene Diene Monomer (EPDM), High Temperature Vulcanized Silicone Rubber (HTV SR), porcelain and SR coated porcelain insulators. The aging performance of the different test samples for the three types of excitation are compared in terms of peak leakage current, visual observations of surface degradation and hydrophobicity properties. The leakage current data for HVAC excitation shows that the insulators from the different manufacturers perform differently, even for the same type of material. The results also indicate differences in the way the surfaces degrade, as well as the rate of degradation. For insulators representing the same specific creepage distance, but different materials, it has been shown that the material does influence the aging performance. Comparison of the leakage current data for the HTV SR insulators from the same manufacturer, but with different specific creepage distances, shows that the specific creepage distance affect the aging performance significantly. In general, the test insulators showed higher peak leakage currents with HVDC excitation compared to HVAC excitation. The results for positive polarity HVDC excitation show that the dry band arcing, as well as the discharges, has the same form for all six insulators. The colour of the dry band discharges ranged from a blue-ish orange to a dark yellow, depending on the intensity of the leakage currents. The hydrophobic insulators, namely the HTV SR, EPDM and RTV SR coated porcelain insulators, had lost hydrophobicity within the first week of testing. The results for negative polarity HVDC excitation show severe surface degradation compared to the results for HVAC excitation. The effect of positive polarity HVDC excitation, however, seems to be more severe in terms of leakage currents and aging compared to negative polarity HVDC excitation.
112

Particle contamination of high voltage DC insulators.

Horenstein, Mark Nathan January 1978 (has links)
Thesis. 1978. Ph.D.--Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Bibliography: leaves 248-250. / Ph.D.
113

Fabrication and characterization of thin-film encapsulation for organic electronics

Kim, Namsu 16 November 2009 (has links)
The rapid development of organic electronics is leading to a number of promising devices in the area of energy sources and conservation (e.g., solar cells and solid-state lighting), while also advancing display technology, sensors, and thin-film transistors. One obstacle to this development is the susceptibility of these devices to water vapor and oxygen, which are well known to cause rapid degradation in many organic electronic devices. In order to guarantee the minimum lifetime needed for various applications, high barrier performance encapsulation materials and structures must be developed and has been the object of much experimental research. However, there is a dearth of comprehensive studies which link the characterization, modeling, and integration of ultra-high barrier films with organic electronics. Such studies are necessary in order to advance the understanding of thin-film encapsulation and to find methodologies which greatly improve its performance. The present work investigates the processing and development of high quality single-layer and multilayer encapsulation architectures for ultra-high barrier films. For compatibility with organic electronics, this study focuses on low temperature fabrication processes which can lead to poor film quality. To circumvent the issue of defects, multilayer encapsulation films with alternating inorganic and organic layers were used to provide ultra-low permeation films. By reducing the complexity of typical multilayer architectures, a new encapsulation processing procedure was developed which combines a plasma enhanced chemical vapor deposition fabricated inorganic film followed by a high quality film deposited by atomic layer deposition. The improvements that this hybrid film provided were through the quick coating of the device via plasma-based deposition followed by a short atomic layer deposition exposure to seal the defects in the first film. The barrier performance of all thin-film encapsulation was characterized in terms of the effective water vapor transmission rate (WVTR) by using Ca corrosion tests. A detailed study of the water vapor permeation mechanism through thin-film layers was presented. Finally, fully characterized encapsulation layers were integrated with organic solar cells to validate the effectiveness of the barrier layers. The compatibility of the encapsulation process with organic devices was investigated by comparing the performance parameters of organic device before and after encapsulation. The parameters of encapsulated organic devices with various encapsulation structures were compared with their initial values as a function of exposure time to atmosphere to provide a link between effective WVTR and shelf-lifetime of encapsulated organic devices.
114

Comportements électriques des isolateurs standards IEEE recouverts de glace /

Chafiq, Mourad. January 1995 (has links)
Mémoire (M.Eng.)--Université du Québec à Chicoutimi, 1995. / Résumé disponible sur Internet. CaQCU Document électronique également accessible en format PDF. CaQCU
115

Study of the influence of altitude on the characteristics of the electrical arc on polluted ice surface = L'étude de l'influence de l'altitude sur les caractéristiques de l'arc électrique à la surface de glace polluée /

Li, Yu-Ku, January 2002 (has links)
Thèse(D.Eng.)-- Université du Québec à Chicoutimi, 2002. / Document électronique également accessible en format PDF. CaQCU
116

Initiation et développement des décharges couronnes sur une surface de glace /

Ndiaye, Ibrahima, January 2003 (has links)
Thèse (M.Eng.) -- Université du Québec à Chicoutimi, 2003. / Bibliogr.: f. [98]-105. Document électronique également accessible en format PDF. CaQCU
117

Étude des conditions critiques de la propagation de l'arc sur les isolateurs recouverts de glace = Study of critical conditions of arc propagation on ice-covered insulators /

Aboutorabi, Seyed Sadreddin, January 2003 (has links)
Thèse (M.Eng.) -- Université du Québec à Chicoutimi, 2003. / Bibliogr.: f. 66-73. Document électronique également accessible en format PDF. CaQCU
118

Finite element modeling of electric field distributions around a resistive glazed post station insulator covered with ice = Modélisation par éléments finis de la distribution du champ électrique autour d'un isolateur de poste avec une couche semi-conductrice recouvert de glace /

Jaiswal, Vinay Kumar, January 2005 (has links)
Thèse (D.Ing.) -- Université du Québec à Chicoutimi, 2005. / Bibliogr.: f. 133-137. Document électronique également accessible en format PDF. CaQCU
119

Studies On Silicone Rubber Nanocomposites As Weathershed Material For HVDC Transmission Line Insulators

Vas, Joseph Vimal 07 1900 (has links) (PDF)
Outdoor insulators are one of the most important parts of a power system. The reliability of a power system depends also on the reliability of the insulators. The main functions of an insulator used for outdoor applications are to give the necessary insulation, provide the necessary mechanical support to the transmission line conductor and also to resist the various environmental stresses like pollution, ultra violet rays etc. Traditionally porcelain and glass insulators have been used for outdoor insulator applications. They are good insulators under normal conditions and the cap and pin arrangement allows them to take up the mechanical load of the line. But owing to their large weight and brittle nature they are susceptible to vandalism and also they have increased cost of installation and commissioning. But the main problem of porcelain and glass insulators is its performance under polluted environmental condition. Under wet and polluted conditions, the porcelain insulators allow the formation of a conducting layer on the surface which results in setting up of leakage current, dry band arcing and power loss. This problem is further augmented under dc voltages where the stress is unidirectional and the contaminant deposition is higher as compared to ac. Polymeric insulators are a good alternative for porcelain and ceramic insulators for use especially under dc voltages because of their good pollution performance. The property of surface hydrophobicity resists the setting up of leakage currents and hence polymeric insulators help in reducing power loss. They are also light in weight and vandalism resistant and hence easier to install. But being polymeric, they form conductive tracks and erode when exposed to high temperatures which occur at the surface during dry band arcs and when exposed to corona discharges. The surface hydrophobicity is also temporarily lost when exposed to different electrical stresses. Silicone rubber is the most popular among the various choices of polymers for outdoor insulator applications. They have good surface hydrophobicity and tracking performance. But polymers in their pure form cannot be used as insulators because of their poor mechanical strength. Adding inorganic fillers into the polymer matrix not only improves its mechanical properties but also its erosion resistance. Micron sized Alumina Trihydrate (ATH) is used traditionally to improve the tracking and erosion resistance of polymeric insulators. A very high loading (up to 60%) is used. Adding such a high filler loading to the base polymer hampers its flexibility and the material processing. With the advent of nanotechnology, nano fillers have come into vogue. Studies conducted on nano filled polymers showed exciting results. A small amount of nano fillers in the polymer matrix showed significant improvement in the mechanical strength without hampering its flexibility. The electrical properties like tracking and erosion also improved with filler loading. Hence the use of nano filled silicone rubber is a good alternative for use as a high voltage insulator especially under dc voltages. Reports suggest that adding nano fillers into the silicone rubber matrix improves the tracking and erosion resistance and the corona degradation as compared to the unfilled samples under ac voltages. The literature on the dc performance of silicone rubber nano composites is scarce. So the present study aims to evaluate the performance of silicone rubber nano composites for tracking and erosion resistance and corona degradation under dc voltages. The tracking and erosion resistance under dc voltages was measured using the Inclined Plane Tracking and Erosion Resistance set up as per ASTM D2303 which was modified for dc voltage studies. The performance of nano Alumina and nano Silica fillers were evaluated under negative dc and the performance was compared with micron sized Alumina Trihydrate filled samples. The effect of filler loading was also studied. It was seen that the performance of the silicone rubber improved with filler loading. A small loading percentage of nano fillers were enough to give performance similar to silicone rubber filled with micron sized ATH filler. The silicone rubber performed better under negative dc as compared to ac and positive dc. The positive dc tests showed a migration of ions from the electrodes onto the sample surface. The increased surface conductivity resulted in very heavy erosion in the case of positive dc tested samples. The corona aging studies were also conducted on silicone rubber nano composites. Nano silica was used as filler in this case. Different filler loadings were employed to understand the effect of filler loading. The corona was generated using a needle plane electrode and samples were exposed to both positive and negative dc corona. The samples were exposed to corona for different time intervals – 25 and 50 hours to study the effect of exposure time. The hydrophobicity, crack width and surface roughness were measured after the tests. Adding nano fillers into the polymer matrix improved the corona performance. With filler loading, the performance improved. The samples exposed to positive dc corona performed better than those under negative dc corona. The loss of hydrophobicity, surface cracks and the surface roughness was less in the case of positive dc corona tested samples. With exposure time, the performance of silicone rubber became poorer for positive dc corona tested samples. For the negative dc corona tested samples, the performance seemed to improve with exposure time. The tracking and erosion resistance and the corona aging studies conducted showed that the performance of silicone rubber is improved by adding nano fillers into the polymer matrix. A small amount of nano filler loading was enough to perform similar to a heavily loaded micron filled sample. Hence nano fillers can be used as a good functional material to improve the performance of silicone rubber insulators especially under wet and polluted conditions.
120

Modélisation physique et numérique par la méthode des éléments finis de frontière de la distribution du potentiel et du champ électrique le long d'un isolateur standard de poste 735 KV recouvert de glace /

Volat, Christophe, January 2002 (has links)
Thèse (D.Eng.)-- Université du Québec à Chicoutimi, 2002. / Document électronique également accessible en format PDF. CaQCU

Page generated in 0.0722 seconds