• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 124
  • 101
  • 26
  • 17
  • 13
  • 9
  • 6
  • 5
  • 5
  • 3
  • 1
  • Tagged with
  • 357
  • 357
  • 95
  • 80
  • 43
  • 41
  • 38
  • 35
  • 32
  • 31
  • 31
  • 30
  • 28
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Grain Sorghum Field Emergence and Seed Vigor Tests

Detoni, Cezar Ernesto 05 August 1997 (has links)
Poor emergence of sorghum [(Sorghum bicolor (L) Moench] affects the stand and potential yields. The major objective of this research was to find correlations among field emergence data and laboratory seed vigor tests. Thirty-two and 30 hybrids of sorghum were planted at three Virginia locations in 1995 and 1996, respectively. Field emergence was subsequently compared with results from laboratory tests that included: 1) standard germination; 2) osmotic-stress using polyethylene glycol 8000 (mw); 3) heat-shock using 2 hr at 50°C stress; 4) electrical conductivity of steep water of germinating seeds; and 5) seed mass. Field emergence of grain sorghum differed among hybrids, years and locations. Mean emergence across years and locations was 67.5%, whereas mean germination in the laboratory was 87.8%. There were interaction between hybrid and location and between hybrid and year. Germination under optimal conditions (standard germination test) and with osmotic or heat-shock stress differed among hybrids. Regression analyses showed a weak correlation between laboratory germination (with or without stress) and field emergence in both years. The fresh weight of seedlings whether from standard germination or stress tests also differed among hybrids in both years, and the associations with field emergence were weakly correlated in 1996. Hybrids showed significant differences in radicle length when grown under laboratory stress in both years following standard germination. There was a weak correlation with field emergence and radicle length following heat-shock treatment in 1996. The measurement of electrical conductivity in the seed steep water showed significant differences among hybrids. A weak correlation with field emergence was seen in 1996. Conductivity values per gram of seed and per cm² of seed area revealed differences among hybrids. The correlation of these parameters with field emergence was higher than conductivity per seed. Seed mass varied among hybrids in both years , but was no correlation between seed mass and emergence. Of the laboratory parameters examined, germination proved to be the most consistent predictor of variations in field emergence of sorghum hybrids. / Ph. D.
32

Electrospinning Polymer Nanofibers-Electrical and Optical Characterization

Khan, Saima N. January 2007 (has links)
No description available.
33

Structure and Electrical Conductivity of Mn-based Spinels Used as Solid Oxide Fuel Cell Interconnect Coatings

WANG, YADI 10 1900 (has links)
<p>At solid oxide fuel cell (SOFC) operating temperatures (650<sup>o</sup>C--800<sup>o</sup>C), the chromia scale growth on the interconnect surface and chromium poisoning of cathode can lead to performance degradation of the whole cell. A spinel coating can be effective for blocking chromium outward diffusion to overcome this issue. In this thesis, two spinel-forming systems, Zn-Mn-O and Co-Cu-Mn-O were studied to identify a suitable coating.</p> <p>In-situ high temperature XRD was used to identify the phases in the Zn-Mn-O system between 600<sup>o</sup>C and 1300<sup>o</sup>C. The results showed that cubic spinel phase was stable only at high temperatures (above 1200<sup>o</sup>C) and when the temperature decreases, the cubic phase tends to deform to tetragonal structure. In addition, the conductivity results showed low conductivities (below 3 S/cm) at SOFC operating temperature. Thus, the Zn-Mn-O system is not suitable for SOFC interconnect coatings.</p> <p>Another potential coating material analyzed was the Co-Cu-Mn-O system. This system exhibited promising conductivity values. Electrodeposition was used to apply Co-Cu-Mn-O coatings on both ferritic stainless steel and chromium-based alloy (Cr-5Fe) followed by oxidation in air at 800<sup>o</sup>C. The spinel coating formed nicely on the stainless steel substrate. However, on the chromium plate, nitride formation, blistering and metal isolation were the common problems that occurred during the oxidation process. In order to improve the quality of coating on the chromium alloy, different heat treatments were explored, such as annealing in reducing atmosphere, oxidation in pure oxygen / mixed gas and decreasing the oxidation temperature. The objective of modifying the heat treatment was to produce adherent, dense coatings.</p> / Master of Applied Science (MASc)
34

Effect of Leaching Scale on Prediction of Total Dissolved Solids Release from Coal Mine Spoils and Refuse

Ross, Lucas Clay 24 August 2015 (has links)
Coal surface mining in the Appalachian USA coalfields can lead to significant environmental impacts including elevated total dissolved solids (TDS) levels in receiving streams. Column leaching procedures are recommended by many studies for TDS prediction, but many question their applicability to field conditions. The objective of this study was to assess results from a simple column leaching method relative to larger scale leaching vessels (scales) using one coal mine spoil and two coarse coal refuse materials. A non-acidic mine spoil sample from SW Virginia (crushed to ≤ 1.25 cm) was placed into PVC columns (~10 cm x 40 cm) in the laboratory and leached unsaturated with simulated acidic rainfall. The same spoil was also placed into larger 'mesocosms' (~1.5 m³) with run-of-mine material and into barrels (~0.1 m³; screened to ≤ 15 cm) under natural field environmental and leaching conditions. Similarly, two coarse coal refuse samples were placed into lab columns and field barrels. Comparative results suggest the column method was a reasonable predictor of TDS release from the coal mine spoil relative to the two larger scales studied. However, there were significant differences at times during the study, including during initial peak TDS elution (1,750 µS cm⁻¹ in columns vs. 2,250 µS cm⁻¹ in mesocosms). Field leaching also produced a distinct seasonal time-lagged EC pattern that was not observed in the columns. On the other hand, significantly different and dissimilar leaching results were noted for the refuse column vs. barrel leachates, calling into question their prediction ability for refuse. / Master of Science
35

A Computational and Experimental Study on the Electrical and Thermal Properties of Hybrid Nanocomposites based on Carbon Nanotubes and Graphite Nanoplatelets

Safdari, Masoud 13 December 2012 (has links)
Carbon nanotubes (CNTs) and graphite nanoplatelets (GNPs) are carrying great promise as two important constituents of future multifunctional materials. Originating from their minimal defect confined nanostructure, exceptional thermal and electrical properties have been reported for these two allotropic forms of carbon. However, a brief survey of the literature reveals the fact that the incorporation of these species into a polymer matrix enhances its effective properties usually not to the degree predicted by the composite\\textquoteright s upper bound rule. To exploit their full potential, a proper understanding of the physical laws characterizing their behavior is an essential step. With emphasis on the electrical and thermal properties, the following study is an attempt to provide more realistic physical and computational models for studying the transport properties of these nanomaterials. Originated from quantum confinement effects, electron tunneling is believed to be an important phenomenon in determining the electrical properties of nanocomposites comprising CNTs and GNPs. To assess its importance, in this dissertation this phenomenon is incorporated into simulations by utilizing tools from statistical physics. A qualitative parametric study was carried out to demonstrate its dominating importance. Furthermore, a model is adopted from the literature and extended to quantify the electrical conductivity of these nanocomposite. To establish its validity, the model predictions were compared with relevant published findings in the literature. The applicability of the proposed model is confirmed for both CNTs and GNPs. To predict the thermal properties, a statistical continuum based model, originally developed for two-phase composites, is adopted and extended to describe multiphase nanocomposites with high contrast between the transport properties of the constituents. The adopted model is a third order strong-contrast expansion which directly links the thermal properties of the composite to the thermal properties of its constituents by considering the microstructural effects. In this approach, a specimen of the composite is assumed to be confined into a reference medium with known properties subjected to a temperature field in the infinity to predict its effective thermal properties. It was noticed that such approach is highly sensitive to the properties of the reference medium. To overcome this shortcoming, a technique to properly select the reference medium properties was developed. For verification purpose the proposed model predictions were compared with the corresponding finite element calculations for nanocomposites comprising cylindrical and disk-shaped nanoparticles. To shed more light on some conflicting reports about the performance of the hybrid CNT/GNP/polymer nanocomposites, an experimental study was conducted to study a hybrid ternary system. CNT/polymer, GNP/polymer and CNT/GNP/polymer nanocomposite specimens were processed and tested to evaluate their thermal and electrical conductivities. It was observed that the hybrid CNT/GNP/polymer composites outperform polymer composites loaded solely with CNTs or GNPs. Finally, the experimental findings were utilized to serve as basis to validate the models developed in this dissertation. The experimental study was utilized to reduce the modeling uncertainties and the computational predictions of the proposed models were compared with the experimental measurements. Acceptable agreements between the model predictions and experimental data were observed and explained in light of the experimental observations. The work proposed herein will enable significant advancement in understanding the physical phenomena behind the enhanced electrical and thermal conductivities of polymer nanocomposites specifically CNT/GNP/polymer nanocomposites. The dissertation results offer means to tune-up the electrical and thermal properties of the polymer nanocomposite materials to further enhance their performance. / Ph. D.
36

Carbon nanotubes and graphene polymer composites for opto-electronic applications

Boulanger, Nicolas January 2016 (has links)
Carbon nanotubes are carbon based structures with outstanding electronical and mechanical properties. They are used in a wide range of applications, usually embedded in polymer in the form of composites, in order to affect the electronic behavior of the matrix material. However, as the nanotubes properties are directly dependent on their intrinsic structure, it is necessary to select specific nanotubes depending on the application, which can be a complicated and inefficient process. This makes it attractive to be able to reduce the amount of material used in the composites. In this thesis, focus is placed on the electrical properties of the composites. A simple patterning method is presented which allows the use of extremely low amounts of nanotubes in order to increase the electrical conductivity of diverse polymers such as polystyrene (PS) or poly(3-hexylthiophene) (P3HT). This method is called nanoimprint lithography and uses a flexible mold in order to pattern composite films, leading to the creation of conducting nanotube networks, resulting in vertically conducting samples (from the bottom of the film to the top of the imprinted patterns). In parallel, X-ray diffraction measurements have been conducted on thin P3HT polymer films. These were prepared on either silicon substrate or on graphene, and the influence of the processing conditions as well as of the substrate on the crystallinity of the polymer have been investigated. The knowledge of the crystalline structure of P3HT is of great importance as it influences its electronic properties. Establishing a link between the processing conditions and the resulting crystallinity is therefore vital in order to be able to make opto-electronic devices such as transistor or photovoltaic cells.
37

Liquid moulding of carbon nanoparticle filled composites

Costa, Elisabete Fernandez Reia Da January 2011 (has links)
This thesis focuses on the incorporation of carbon nanoparticles within continuous fibre reinforcements by liquid composite moulding processes, in order to provide enhanced electrical and delamination properties to the multiscale composites. The mechanisms controlling the flow and filtration of these nanoparticles during liquid composite moulding are studied, in order to develop a predictive 1-D model which allows design of the processing of these composite materials. Five different carbon nanoparticles at 0.25 wt% loading, three unmodified and one surface modified carbon nanotube systems and one carbon nanofibre system, were utilised to modify a commercial two-component epoxy resin utilised to impregnate carbon and glass reinforcements at high fibre volume fraction by resin transfer moulding. The dispersion of the nanofillers in the prepolymer was carried out by ultrasonication, high shear mixing or triple roll milling or a combination of the three. Electrical conductivity measurements of the carbon nanoparticle liquid suspensions during dispersion, alongside optical microscopy imaging and rheological analysis of these allowed the selection of the concentration of nanofiller and the appropriate dispersion technique for each nanoparticle system. The resin transfer moulding process required adaptation to incorporate the dispersion and modify degassing steps, especially when utilising unmodified carbon nanoparticles suspensions, due to their higher viscosity and tendency to be filtered. Nanoparticle filtration was identified by electrical conductivity measurements and microscopy of specimens cut at increasing distances from the inlet. Cake filtration was observed for some of the unmodified systems, whereas deep bed filtration occurred for the surface modified CNT material. Property graded composites were obtained due to filtration, where the average electrical conductivity of the carbon and glass composites produced increased by a factor of two or one order of magnitude respectively. The effect of filler on the delamination properties of the carbon fibre composites was tested under mode I. The results do not show a statistically significant improvement of delamination resistance with the presence of nanoparticles, although localised toughening mechanisms such as nanoparticle pull-out and crack bridging as well as inelastic deformation have been observed on fracture surfaces. Particle filtration and gradients in concentration resulted in non-linear flow behaviour. An 1-D analytical and a finite difference model, based on Darcy’s law accompanied by particle mass conservation and filtration kinetics were developed to describe the flow and filtration of carbon nanoparticle filled thermosets. The numerical model describes the non-linear problem by incorporating material property update laws, i.e. permeability, porosity and viscosity variations on concentration of retained and suspended particles with location and time. The finite difference model is consistent and converges to the analytical solution. The range of applicability of the analytical model is limited to lower filtration coefficients and shorter filling lengths, providing an approximate solution for through thickness infusion; whereas the numerical model presents a solution outside this range, i.e. in-plane filling processes. These models allow process design, with specified carbon nanoparticle concentration distributions achieved via modifying the nanofiller loading at the inlet as a function of time.
38

Electro-disinfection of Ballast Water

McCraven, Elizabeth Kathleen 20 December 2009 (has links)
This research validates electro-disinfection as a potential secondary ballast water treatment technology. Electricity applied to bacteria laden water produced bactericidal effects, reactive oxygen species and chlorine generation which annihilated bacteria. Evaluation of electro-disinfection experiments showed titanium electrodes had the maximum kill efficacy while disinfection with aluminum and stainless steel electrodes had lesser kill efficacy. A continuous flow electro-disinfection reactor was evaluated utilizing artificial brackish and fresh ballast water. Brackish water had a 100% bacteria kill efficiency utilizing titanium electrodes at a current density of 10 mA/cm2. Fresh water was augmented with the addition of salt to increase its electrical conductivity from 232 μS/cm to 873 μS/cm to ascertain 100% bacteria kill efficiency with titanium electrodes and a current density of 9.8 mA/cm2.
39

Transverse Thermoelectric Effect

Crawford, Charles 13 August 2014 (has links)
Anisotropic thermoelectric effects can be measured in certain materials. Anisotropy can also be simulated using a repeated, layered structure of two materials cut at an angle. Various aspect ratios and angles of inclination are investigated in device geometry in order to maximize the thermopower. Eddy currents have been shown to occur in thermoelectric devices, and evidence of these currents are revealed in finite element analysis of the artificially synthesized anisotropic Peltier effect.
40

Influência do cálcio e do lítio na sinterização e na condutividade elétrica do óxido de cério contendo gadolínio / Influence of calcium and lithium on the densification and electrical conductivity of gadolini-doped ceria

Porfirio, Tatiane Cristina 28 February 2011 (has links)
A introdução de cálcio e lítio como aditivos de sinterização na céria: 10% mol gadolínia foi investigada com o intuito de verificar sua influência na densificação e condutividade elétrica das cerâmicas sinterizadas. Pós contendo de 0 a 1,5% mol do metal foram preparados tanto por reação em estado sólido quanto pela co-precipitação dos oxalatos. As principais técnicas de caracterização utilizadas foram análise térmica, difração de raios X, microscopia eletrônica de varredura e medida da condutividade elétrica por espectroscopia de impedância. Os resultados obtidos mostraram que cerâmicas densas podem ser obtidas utilizando ambos os aditivos. O aumento no teor do aditivo resulta em aumento na densificação. A forma de adição, por reação em estado sólido ou por coprecipitação exerce influência na condutividade elétrica. A adição de cálcio promove maior crescimento dos grãos que o lítio. A condutividade elétrica das amostras contendo o segundo aditivo é inferior à da céria-gadolínia pura. Ambos os aditivos exercem influência na condutividade intergranular. Adição de cálcio resulta também em diminuição da condutividade intragranular. Os aditivos favorecem a exudação do gadolínio. / In this work, the use of calcium and lithium as sintering aid to gadolinia-doped ceria was systematically investigated. The main purpose was to verify the influence of these additives on the densification and electrical conductivity of sintered ceramics. Powder compositions containing up to 1.5 mol% (metal basis) of calcium or lithium were prepared by both solid state reaction and oxalate coprecipitation methods. The main characterization techniques were thermal analyses, X-ray diffraction, scanning electron microscopy and electrical conductivity by impedance spectroscopy. Both additives promoted densification of gadolinia-doped ceria. The densification increases with increasing the additive content. Different effects on microstructure and electrical conductivity result from the method of preparation, e.g., solid state reaction or coprecipitation. Calcium addition greatly enhances the grain growth compared to lithium addition. The electrical conductivity of specimens containing a second additive is lower than that of pure gadolinia-doped ceria. Both additives influence the intergranular conductivity and favor the exudation of gadolinium out of the solid solution.

Page generated in 0.3549 seconds