• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 117
  • 83
  • 23
  • 11
  • 8
  • 7
  • 6
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 302
  • 67
  • 64
  • 50
  • 45
  • 37
  • 36
  • 29
  • 28
  • 26
  • 25
  • 23
  • 22
  • 21
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Relationship between food structure and drying processes

Williamson, Sarah January 2002 (has links)
No description available.
2

Mécanismes d'assemblage des granules de stress dans des conditions de stress oxydatif et osmotique / Mechanisms of stress granules assembly under oxidative and osmotic stresses

Bounedjah, Ouissame 14 March 2014 (has links)
Les granules de stress (GSs) sont des entités cytoplasmiques très dynamiques et dépourvues de membranes, ils apparaissent suite à des conditions de stress. En raison du fait que les GSs sont instables et dépourvus de membranes, leur isolement biochimique n'a pas été accompli. En effet, toutes les fonctions qui sont attribuées aux GSs se basent principalement sur l'observation par microscopie optique de quelques protéines régulatrices des ARNm. A travers cette étude, nous avons déterminé la composition des GSs à l'échelle nanométrique dans deux conditions de stress différentes (stress osmotique et stress oxydatif). Nous avons d'abord cartographié les GSs par microscopie électronique puis ces mêmes granule sont été analysés par microscopie ionique. Grâce au marquage isotopique de l'ARN, nous avons montré que ces structures sont très riche sen ARN, par rapport au reste du cytoplasme et ceci dans les deux conditions de stress. Le deuxième volet de notre étude nous a permis de mettre en évidence un rôle fonctionnel des GSs dans la réponse au stress osmotique. En effet, l'augmentation de la force ionique et de l'encombrement macromoléculaire (deux paramètres qui sont accentués dans les conditions de stress osmotique) permet la dissociation des polysomes et l'assemblage des GSs. Néanmoins, quelques heures après, l'accumulation des osmolytes compatibles dans le cytoplasme par les transporteurs spécifiques réduit la force ionique et l'encombrement macromoléculaire permettant ainsi la dissociation des GSs et le retour progressif de la traduction. Nous avons démontré également que le préconditionnement des cellules avec des osmolytes compatibles avant leur exposition à un stress osmotique sévère bloque la formation des GSs et augmente le taux de survie des cellules. L'ensemble de ces résultats prouve que les osmolytes compatibles favorisent la survie cellulaire et l'adaptation des cellules aux conditions de stress osmotique partiellement via la dissociation des GSs et la reprise de la traduction. / Stress granules (SGs) are highly dynamical cytoplasmic bodies laking encapsuling membarnes which appear in reponse to a wide variety of stresses. Due to their lack of membranes and their instability, their biochemical isolation from cells has not yet been accomplished. All functions attributed to SGs are mostly based on optical microscopy observations of key proteins involved in mRNA processing. In the first part of our study, we explored the RNA composition SGs at a nanometric scale and their biophysical properties in two different conditions (osmotic and oxydative stresses). To do so, we imaged and identified the SGs by electron microscopy and analyzed the distribution of N15-uridine labeled-RNA via ionic microscopy. We show that the SGs are enriched in RNA compared to rest of cytoplasm in the two stress conditions. The second part of our study, we tackled the functional role of the SGs in response to osmotic stress. The increase of ionic strength and macromolecular crowding which are the hallmark of osmotic stress lead to SGs assembly in cells after polysome disassembly. However, several hours after the onset of stress, the compatible osmolyte accumulation in the cell by specific transporters reduces the ionic strength and macromolecular crowding thus allowing the diassembly of SGs and the progressive return of translation. In line with this, celle preconditioning with compatible osmolytes before their exposition to severe osmotoc stress prevents the assembly of SGs and increases the rate of cell survival. Together, these results show that compatible osmolytes favors cell survival and adaptation to osmotoc stress via the disassembly of SGs ans recovery of translation.
3

Osmotolerance in Listeria monocytogenes : mechanisms and regulation of compatible solute accumulation

Fraser, Katy R. January 2003 (has links)
The work presented in this thesis describes the characterisation of the L-carnitine transporter, OpuC, belonging to the binding protein dependent ABC transporter superfamily. The transporter is encoded on a four gene operon, <i>opuCABCD</i>. The physiological study of two <i>opuC</i> mutants have revealed that this operon encodes the principal carnitine transport system in <i>L. monocytogenes</i>, and that the resulting transporter is specific for carnitine and not the related solute betaine. Usually the activity of this transporter is subject to negative regulation during growth in the presence of peptone. An <i>opuCA</i> deletion mutant retained the ability to utilise carnitine as an osmoprotectant at high concentrations (1 mM), and accumulated a cytoplasmic carnitine pool comparable to the wild-type, suggesting that a second low affinity carnitine transport system must exist in <i>L. monocytogenes</i>. Measurement of carnitine uptakes rates in the presence of 100 mM and 1 mM carnitine revealed that the rate of carnitine uptake in the <i>DopuCA </i>mutant was dependent on the carnitine concentration, confirming the low affinity of this unidentified system for carnitine. The stress inducible sigma factor, s<sup>B</sup>, is predicted to play a role in regulating the <i>Listerial </i>osmotic stress response. Studies utilising a <i>sigB</i> deletion mutant revealed that s<sup>B</sup> is required for the utilisation of carnitine as an osmoprotectant, by regulating the transcription of the <i>opuC</i> operon in response to hyperosmotic stress. Betaine accumulation is reduced in a strain lacking s<sup>B</sup>, in particular Na<sup>+</sup> dependent betaine transport, although transcription of neither betaine transport systems, <i>gbu </i>and <i>beiL</i>, appear affected by the s<sup>B</sup> might play a post-transcriptional regulatory role in betaine accumulation.
4

Phospholipase C activation is implicated in the responses of yeast to several stresses

Perera, Nevin Martin January 2002 (has links)
No description available.
5

Protein synthetic organelles and mRNAs in the dendrites of hypothalamic magnocellular neurons

Ma, Dan January 1999 (has links)
No description available.
6

Processing of high quality mango chips

Nunez Gallegos, Yolanda 2009 May 1900 (has links)
Potato chips are very popular in the United States. Recently, an enormous interest in developing snacks from fruits and vegetables with high quality has been assessed. Mango, due to its characteristic flavor and nutritional value, is excellent for snack production. Osmotic dehydration (OD) as a pre-treatment and vacuum frying (1.33 kPa) processes were proposed to obtain high quality mango chips. Mango ?Tommy Atkins? slices were pre-treated with different OD concentrations (40, 50, and 65w/v), times (45, 60, and 70 min), and temperatures (22, 40, and 57oC). Physical and chemical properties (aw, pH, oBrix, sugar gain, water loss, and shrinkage) after OD were studied. The pre-treated slices were vacuum fried (1.33 kPa) at 120, 130, and 138oC and product quality attributes (PQA) (oil content, texture, porosity, color, microstructure, and carotenoid content) were determined. Microstructure of the chips was analyzed using an environmental scanning electron microscope. Effect of frying temperatures at optimum OD (65 w/v at 40oC) times was tested. The consumer tests showed that samples were all acceptable. The best mango chips process was the one with 65 w/v concentration for 60 min (pre-treatment) and vacuum frying at 120oC. Kinetic studies on oil content, texture, porosity, color, and carotenoid retention were performed. Oil absorption was modeled by a fractional conversion kinetic model. Absorption rate constant increased with frying temperature. Diameter changes in the chips, although not significant (P>0.05), followed an initial expansion to later decrease. Thickness of the slices increased (puffed) (around 60%) with time for all frying temperatures. Texture changes were for two frying periods: (1) water removal and crust formation and (2) slices became tougher and crispier and the end of frying. Porosity in the samples increased with frying, and a fractional conversion best described this phenomenon. Color *a (redness) increased with frying time and temperature and was modeled using a logistic model. Color *b (yellowness) increased up to 30 s of frying and then decreased. Carotenoids degradation followed a first order model, with a significant (P<0.05) decrease with frying temperature. Mango chips fried under atmospheric fryer had less carotenoid retention (25%) than with a vacuum fryer.
7

Processing of high quality mango chips

Nunez Gallegos, Yolanda 2009 May 1900 (has links)
Potato chips are very popular in the United States. Recently, an enormous interest in developing snacks from fruits and vegetables with high quality has been assessed. Mango, due to its characteristic flavor and nutritional value, is excellent for snack production. Osmotic dehydration (OD) as a pre-treatment and vacuum frying (1.33 kPa) processes were proposed to obtain high quality mango chips. Mango ?Tommy Atkins? slices were pre-treated with different OD concentrations (40, 50, and 65w/v), times (45, 60, and 70 min), and temperatures (22, 40, and 57oC). Physical and chemical properties (aw, pH, oBrix, sugar gain, water loss, and shrinkage) after OD were studied. The pre-treated slices were vacuum fried (1.33 kPa) at 120, 130, and 138oC and product quality attributes (PQA) (oil content, texture, porosity, color, microstructure, and carotenoid content) were determined. Microstructure of the chips was analyzed using an environmental scanning electron microscope. Effect of frying temperatures at optimum OD (65 w/v at 40oC) times was tested. The consumer tests showed that samples were all acceptable. The best mango chips process was the one with 65 w/v concentration for 60 min (pre-treatment) and vacuum frying at 120oC. Kinetic studies on oil content, texture, porosity, color, and carotenoid retention were performed. Oil absorption was modeled by a fractional conversion kinetic model. Absorption rate constant increased with frying temperature. Diameter changes in the chips, although not significant (P>0.05), followed an initial expansion to later decrease. Thickness of the slices increased (puffed) (around 60%) with time for all frying temperatures. Texture changes were for two frying periods: (1) water removal and crust formation and (2) slices became tougher and crispier and the end of frying. Porosity in the samples increased with frying, and a fractional conversion best described this phenomenon. Color *a (redness) increased with frying time and temperature and was modeled using a logistic model. Color *b (yellowness) increased up to 30 s of frying and then decreased. Carotenoids degradation followed a first order model, with a significant (P<0.05) decrease with frying temperature. Mango chips fried under atmospheric fryer had less carotenoid retention (25%) than with a vacuum fryer.
8

Climatic adaptation and cell sap concentration

Serviss, George H. January 1926 (has links)
No description available.
9

Comparative analysis of sugar-biosynthesis proteins of sorghum stems and the investigation of their role in hyperosmotic stress tolerance

Njokweni, Anathi Perseverence January 2015 (has links)
Philosophiae Doctor - PhD / Sorghum bicolor (L.) Moench is an important cereal crop currently explored as a potential bio-energy crop due to its stress tolerance and ability to ferment soluble sugars. Physiological studies on sorghum varieties have demonstrated that part of drought tolerance is attributed to sugar accumulation in the sorghum stems. Despite the agronomic advantages of sorghum as a bio-energy crop, more research efforts towards the molecular elucidation of sorghum traits that confer drought tolerance are necessary. Particular focus on traits, which could potentially contribute to an efficient bio-energy production under environmental constraints, would be an added advantage. This study examined the role of sugar biosynthesis proteins in conferring tolerance to drought-induced hyperosmotic stress, and ultimately osmotic adjustment in sorghum varieties. Sorghum bicolor (L.) Moench varieties (ICSB338, ICSB73, ICSV213 and S35) with different levels of drought tolerance, were grown under watered conditions until early anthesis after which, a 10-day water deficit period was introduced
10

Concentration of Osmotic Dehydration Solutions using Membrane Separation Processes

Warczok, Justyna 02 December 2005 (has links)
El procesado de alimentos conlleva, en mayoría de los casos, la generación de subproductos o residuos que pueden ser reutilizados o revalorizados mediante la utilización de técnicas de separación por membrana. Estas técnicas ofrecen la posibilidad de tratar las soluciones en condiciones de operación muy suaves, y no comportan en mayoría de las ocasiones, una alteración de los componentes a recuperar. Actualmente, las técnicas de separación por membrana, debido a su alta calidad y relativamente bajos costes, se encuentran completamente integradas en la mayoría de procesos productivos que requieren de una etapa de separación. Sin embargo, la investigación en el área de las técnicas de separación por membrana sigue abriendo nuevos campos de aplicación, que surgen con la mejora de las condiciones tecnológicas de los equipos y la posibilidad de obtener nuevas membranas adaptables a necesidades específicas.En concreto, en este proyecto se utilizaron técnicas de separación por membranas para concentrar soluciones de azúcar procedentes de deshidratación osmótica (en adelante OD). El principal objetivo fue estudiar el potencial de varias técnicas de separación, haciendo hincapié en los flujos obtenidos durante la reconcentración y en la calidad de la solución reconcentrada.La deshidratación osmótica es un tratamiento que permite una eliminación parcial del agua en un alimento y/o la incorporación de solutos de una manera controlada, respetando la calidad inicial del producto. El proceso consiste en introducir los alimentos en una solución hipertónica, controlando las condiciones de operación para favorecer, en mayor o menor grado la incorporación de solutos y la deshidratación del alimento. La aplicación de OD puede resultar en la mejora de las propiedades nutricionales y funcionales de los alimentos y en la reducción de la energía requerida para la deshidratación. El principal problema de la aplicación industrial de la OD radica en la gestión de la solución procedente del proceso. La reutilización de esta solución plantea una doble ventaja: primero desde el punto de vista ambiental, ya que se elimina un efluente del proceso que a menudo no puede ser vertido directamente, y segundo el ahorro económico que representa la recuperación de las materias primas que muchas veces contienen solutos de importante valor económico. Los métodos de separación por membrana utilizados para recuperar las soluciones de OD fueron los siguientes: nanofiltración, osmosis directa y destilación osmótica por membranas. La nanofiltración (NF) presenta altos niveles de retención y un menor gasto de energía que la osmosis inversa, y en la industria azucarera se aplica como uno de los pasos en la clarificación y concentración de jarabes. En los procesos de contactores de membranas: osmosis directa (DO) y destilación osmótica por membranas (OMD), a diferencia de los procesos basados en el tamizaje, el flujo depende solamente de la diferencia de potencial osmótico. Las únicas presiones hidráulicas requeridas son las necesarias para bombear la solución de azúcar y la solución osmótica hasta la superficie de la membrana. Estas características hacen que estos procesos presenten como muy prometedores para la reconcentración de soluciones de azúcar de concentraciones elevadas.Los experimentos de filtración se llevaron a cabo utilizando plantas piloto diseñadas y construidas expresamente para el presente proyecto. Durante todos los procesos de separación por membranas, se empleó como solución modelo una solución de sacarosa a diferentes concentraciones (5-60 ºBrix), debido a que las soluciones aplicadas en la deshidratación osmótica de frutas son habitualmente soluciones de azucares (sacarosa, glucosa o jarabes). Durante los experimentos de NF se evaluó el funcionamiento de las membranas planas: Desal5 DK (GE- Osmonics), MPF-34 (Koch Membrane), NFT-50 (DSS) y tubulares: MPT-34 (Koch Membrane) y AFC 80 (PCIMembranes). Además de la solución de azúcar de diferentes concentraciones (5-20 ºBrix), se concentraron zumos de pera y manzana.La reconcentración mediante osmosis directa se realizó utilizando dos modos de operación: off-site e on-site. En el modo off-site, la reconcentración por ósmosis directa se llevó a cabo en una planta de filtración provista de un módulo plano o tubular, dependiendo de la membrana. En el módulo se llevó a cabo la concentración. En el modo on-site, la deshidratación se realizaba conjuntamente con la reconcentración de la solución osmótica. La solución de reconcentración de la osmosis directa en off-site (offsiteDO) fue NaCl, mientras la solución de reconcentración de la osmosis directa on-site (on-site DO) fue una solución de sacarosa más concentrada que la solución osmótica (60 para una solución osmótica de 40 y 68 para una solución de 50 ºBrix). Para garantizar el flujo de agua entre las dos soluciones y altas retenciones de azúcar durante la off-site DO, se utilizaron membranas de NF planas (Desal5-DK y MPF-34) y tubulares (MPT-34 y AFC80). La reconcentración por osmosis directa on-site se levó a cabo empleando una membrana de microfiltración (Durapore, Millipore), ya que la solución de reconcentración (SS) es la misma que la solución osmótica y la alta viscosidad de la SS restringe mucho el flujo de agua si se utiliza una membrana más densa.En la deshidratación por membranas (OMD) se utilizaron membranas hidrófobas (11806, Sartorius) que presentan una retención teórica del 100 %. Se comparó el rendimiento de dos soluciones de reconcentración: NaCl y CaCl2.Con el fin de obtener información referente a la influencia de las propiedades de las membranas sobre el desarrollo del proceso de concentración de las soluciones procedentes de la deshidratación osmótica, se realizó un estudio detallado de las propiedades de las membranas aplicadas mediante AFM, SEM, FTIR, ángulo de contacto y medidas de potencial zeta. Con la finalidad de generar soluciones osmóticas para someterlas a reconcentración, y también para disponer de productos procedentes de deshidratación osmótica con soluciones frescas que pudieran compararse con aquellas procedentes de OD con solución reconcentrada, se deshidrataron diferentes lotes de manzana (Granny Smith) con soluciones de sacarosa de 40, 50 y 60 ºBrix. Estas pruebas permitieron determinar también el tímelo de operación para una máxima pérdida de agua con relativamente poca impregnación de las manzanas. Después de cada experimento se analizaron los siguientes parámetros: concentración de azúcar, pH, absorbancia a 420 nm de las soluciones y humedad de las manzanas.La nanofiltración, aplicada en la primera fase del presente estudio, resultó ser viable solamente para la reconcentración de soluciones de concentraciones hasta 24 ºBrix. El aumento de la temperatura de 25 hasta 35 ºC para las dos membranas tubulares ocasionó un incremento del flujo de permeado, y el mismo efecto tuvo el aumento de presión transmembranaria de 8 a 12 bar.Se comprobó que el factor más importante para la eficacia del proceso es disponer de una membrana que combine altos flujos y retenciones durante el proceso. La deposición de las partículas de sacarosa y/o los zumos se caracterizó mediante SEM y la topología de la capa filtrante de la membrana se identificó usando AFM. La topología de la capa filtrante de las membranas era diferente para cada una de ellas, a pesar de que todas estaban preparadas con el mismo material (poliamida). En las imágenes de los cortes transversales de las membranas realizados con SEM, se observaron los cambios en la estructura de las membranas producidos por la aplicación de presión durante los experimentos y las altas temperaturas empleadas durante su acondicionamiento. Gracias a las imágenes de SEM se pudo verificar también la eficacia del proceso de acondicionamiento de membranas.A diferencia de NF, tanto la ósmosis directa como la destilación osmótica por membrana permiten la reconcentración de soluciones concentradas de sacarosa (hasta60 ºBrix). La eficacia de estas dos últimas técnicas se evaluó en unción de los flujos de agua obtenidos.El sistema de ósmosis directa on-site propuesto para la reconcentración de las soluciones de OD permitió reutilizar las soluciones osmóticas como mínimo cuatro veces. Para la solución osmótica de 40 ºBrix la humedad de las manzanas fue similar utilizando solución fresca o reconcentrada. En cambio, una solución osmótica de 50 ºBrix, la pérdida de agua de las manzanas fue mayor cuando la deshidratación osmótica se llevó a cabo con reconcentración on-site de la solución osmótica. Los análisis de concentración de azúcar de las soluciones osmóticas y de la solución de reconcentración indican que la membrana elegida para los experimentos facilita el transporte óptimo de solutos y agua entre las dos soluciones. Además, el sistema de reconcentración por membrana propuesto es muy sencillo y de bajo coste porque no requiere presurización.La osmosis directa en off-site proporcionó flujos mucho mayores que los obtenidos con el sistema on-site (1.3 kg/m2h para la solución osmótica de 50 ºBrix respecto a 0.0023 kg/m2h durante on-site DO para la misma solución). Sin embargo, el transporte de solutos de la solución de reconcentración hacía la solución osmótica puede ser considerado un obstáculo para su aplicación a escala industrial.Los flujos de agua más elevados fueron obtenidos utilizando la OMD (2.01 kg/m2h para la solución osmótica de 50 ºBrix y con CaCl2 con la solución de reconcentración). Otra gran ventaja de este proceso es la retención de solutos que proporciona, hecho confirmado por los análisis realizados.El estudio sobre el transporte durante los procesos de contactores de membranas indicó que la viscosidad es la propiedad limitante para la solución osmótica y la actividad de agua/alta presión osmótica como la propiedad más importante a la hora de elegir una solución de reconcentración. Para todos los procesos de separación aplicados, el aumento de la concentración de azúcar de la solución osmótica comporta una disminución notable del flujo de agua.El desarrollo de un posible proceso de deshidratación osmótica con una etapa de reconcentración de la solución osmótica mediante procesos con contactores de membrana ha permitido calcular el área requerida para realizar la reconcentración: 3.6,9.7, 1608 m2 para OMD, off-site DO e on-site DO, respectivamente.Las conclusiones del trabajo confirman la posibilidad de utilizar procesos por membrana para realizar la reconcentración de soluciones osmóticas. No obstante se ha constatado que técnicas más tradicionales basadas en diferencias de presión (NF) no son

Page generated in 0.0282 seconds