• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 12
  • 7
  • 4
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 56
  • 56
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.

Mécanismes d'assemblage des granules de stress dans des conditions de stress oxydatif et osmotique / Mechanisms of stress granules assembly under oxidative and osmotic stresses

Bounedjah, Ouissame 14 March 2014 (has links)
Les granules de stress (GSs) sont des entités cytoplasmiques très dynamiques et dépourvues de membranes, ils apparaissent suite à des conditions de stress. En raison du fait que les GSs sont instables et dépourvus de membranes, leur isolement biochimique n'a pas été accompli. En effet, toutes les fonctions qui sont attribuées aux GSs se basent principalement sur l'observation par microscopie optique de quelques protéines régulatrices des ARNm. A travers cette étude, nous avons déterminé la composition des GSs à l'échelle nanométrique dans deux conditions de stress différentes (stress osmotique et stress oxydatif). Nous avons d'abord cartographié les GSs par microscopie électronique puis ces mêmes granule sont été analysés par microscopie ionique. Grâce au marquage isotopique de l'ARN, nous avons montré que ces structures sont très riche sen ARN, par rapport au reste du cytoplasme et ceci dans les deux conditions de stress. Le deuxième volet de notre étude nous a permis de mettre en évidence un rôle fonctionnel des GSs dans la réponse au stress osmotique. En effet, l'augmentation de la force ionique et de l'encombrement macromoléculaire (deux paramètres qui sont accentués dans les conditions de stress osmotique) permet la dissociation des polysomes et l'assemblage des GSs. Néanmoins, quelques heures après, l'accumulation des osmolytes compatibles dans le cytoplasme par les transporteurs spécifiques réduit la force ionique et l'encombrement macromoléculaire permettant ainsi la dissociation des GSs et le retour progressif de la traduction. Nous avons démontré également que le préconditionnement des cellules avec des osmolytes compatibles avant leur exposition à un stress osmotique sévère bloque la formation des GSs et augmente le taux de survie des cellules. L'ensemble de ces résultats prouve que les osmolytes compatibles favorisent la survie cellulaire et l'adaptation des cellules aux conditions de stress osmotique partiellement via la dissociation des GSs et la reprise de la traduction. / Stress granules (SGs) are highly dynamical cytoplasmic bodies laking encapsuling membarnes which appear in reponse to a wide variety of stresses. Due to their lack of membranes and their instability, their biochemical isolation from cells has not yet been accomplished. All functions attributed to SGs are mostly based on optical microscopy observations of key proteins involved in mRNA processing. In the first part of our study, we explored the RNA composition SGs at a nanometric scale and their biophysical properties in two different conditions (osmotic and oxydative stresses). To do so, we imaged and identified the SGs by electron microscopy and analyzed the distribution of N15-uridine labeled-RNA via ionic microscopy. We show that the SGs are enriched in RNA compared to rest of cytoplasm in the two stress conditions. The second part of our study, we tackled the functional role of the SGs in response to osmotic stress. The increase of ionic strength and macromolecular crowding which are the hallmark of osmotic stress lead to SGs assembly in cells after polysome disassembly. However, several hours after the onset of stress, the compatible osmolyte accumulation in the cell by specific transporters reduces the ionic strength and macromolecular crowding thus allowing the diassembly of SGs and the progressive return of translation. In line with this, celle preconditioning with compatible osmolytes before their exposition to severe osmotoc stress prevents the assembly of SGs and increases the rate of cell survival. Together, these results show that compatible osmolytes favors cell survival and adaptation to osmotoc stress via the disassembly of SGs ans recovery of translation.

Osmotolerance in Listeria monocytogenes : mechanisms and regulation of compatible solute accumulation

Fraser, Katy R. January 2003 (has links)
The work presented in this thesis describes the characterisation of the L-carnitine transporter, OpuC, belonging to the binding protein dependent ABC transporter superfamily. The transporter is encoded on a four gene operon, <i>opuCABCD</i>. The physiological study of two <i>opuC</i> mutants have revealed that this operon encodes the principal carnitine transport system in <i>L. monocytogenes</i>, and that the resulting transporter is specific for carnitine and not the related solute betaine. Usually the activity of this transporter is subject to negative regulation during growth in the presence of peptone. An <i>opuCA</i> deletion mutant retained the ability to utilise carnitine as an osmoprotectant at high concentrations (1 mM), and accumulated a cytoplasmic carnitine pool comparable to the wild-type, suggesting that a second low affinity carnitine transport system must exist in <i>L. monocytogenes</i>. Measurement of carnitine uptakes rates in the presence of 100 mM and 1 mM carnitine revealed that the rate of carnitine uptake in the <i>DopuCA </i>mutant was dependent on the carnitine concentration, confirming the low affinity of this unidentified system for carnitine. The stress inducible sigma factor, s<sup>B</sup>, is predicted to play a role in regulating the <i>Listerial </i>osmotic stress response. Studies utilising a <i>sigB</i> deletion mutant revealed that s<sup>B</sup> is required for the utilisation of carnitine as an osmoprotectant, by regulating the transcription of the <i>opuC</i> operon in response to hyperosmotic stress. Betaine accumulation is reduced in a strain lacking s<sup>B</sup>, in particular Na<sup>+</sup> dependent betaine transport, although transcription of neither betaine transport systems, <i>gbu </i>and <i>beiL</i>, appear affected by the s<sup>B</sup> might play a post-transcriptional regulatory role in betaine accumulation.

Physiology of oil production in green microalga UTEX 2219-4

Wang, Szu-Ting 28 January 2011 (has links)
Microalgae are an important potential feedstock for biodiesel production. Understanding the physiology of lipid biosynthesis in microalgae is pivotal to microalgal aquaculture management. A freshwater green microalga strain, UTEX 2219-4, was isolated from UTEX 2219 which was reported containing two strains. Its ITS sequences are closely related to those in the family of Scenedesmaceae in the GenBank. Nitrogen starvation, salt stress and osmotic stress greatly enhanced lipid biosynthesis in this strain, while combination of nitrogen deficiency and osmotic stress had the most dramatic effect. Chloroplast was condensed and photosynthesis efficiency declined about 50% after 3 days of nitrogen starvation. Chlorophyll degradation followed the same trend but was more severe than the reduction of photosynthesis efficiency. Oil body formation was not observed in the cells kept in the dark under nitrogen starvation, suggesting photosynthesis rather than autophagy is the major player in oil body formation. Under non-saturation levels of light intensities coupled with nitrogen starvation, the oil body formation under 150 £gmol/m2s light intensity was more efficient than that under 75 £gmol/m2s. DCMU blocked photosynthesis as well as oil body formation, supporting that the energy for oil body formation was mostly from photosynthesis rather than autophagy during nitrogen starvation.

Purification and Characterization of S-Adenosyl-L-Methionine:Phosphoethaolamine N-Methyltransferase from Spinach

Smith, David Delmar 09 1900 (has links)
During conditions of osmotic stress, some plants accumulate compatible osmolytes such as glycine betaine or choline-0-sulphate. Choline is required as a precursor for synthesis of both osmolytes and choline is also required by all plants as a component of phospholipids. In the betaine accumulator spinach, choline synthesis requires three sequential N-methylations of phosphoethanolamine (PEA) to generate phosphocholine (PCho), with the first N-methylation being catalyzed by S-adenosyi-L-methionine: PEA Nmethyltransferase (PEAMeT). Choline synthesis and, more particularly the activity of PEAMeT, are up-regulated by salinity (Summers and Weretilnyk, 1993). This thesis reports on the partial purification and preliminary characterization of PEAMeT from spinach. A variety of column chromatography matrices including DEAE Sepharose, phenyl Sepharose, w-aminohexyl agarose, hydroxylapatite, phenyl Superose, Mono Q and adenosine agarose, have been used to purify PEAMeT. A 5403- fold purified preparation yielded a specific activity of 189 nmol· min-1 • mg-1 protein. SDS-PAGE analysis of this preparation revealed a number of polypeptide bands but only one which photoaffinity cross-linked to [3H]SAM. The estimated native molecular weight (MW) of PEAMeT was found to be 77 kDa by gel filtration chromatography and an estimated MW of 54 kDa was determined by SDS-PAGE. SDS-PAGE analysis of samples photoaffinity crosslinked to [3H]SAM gave a slightly higher estimated MW of 57 kDa. Effects of various factors on PEAMeT assay conditions were evaluated using partially purified PEAMeT preparations. PEAMeT activity as a function of pH gave a unimodal curve with an apparent pH optimum at 7.8 with 1 00 mM HEPES-KOH buffer. In vitro PEAMeT activity was inhibited by phosphate, PCho, S-adenosyi-L-homocysteine, ca+ 2, Mn+2 and co+2 but not by choline, betaine, ethanolamine, mono- and dimethylethanolamine or Mg+2 • Phosphobase N-methyltransferase activities present in preparations enriched for PEAMeT activity can catalyse the reaction sequence PEA- PMEA - PDEA - PCho. Under optimized assay conditions using PEA as the sole substrate, PMEA, PDEA and PCho were quantified and were detected in the order: PMEA (77%) > PDEA (17%) > PCho (6%). Thus a single enzyme, PEAMeT, is capable of converting PEA to PCho in leaves of spinach. The existence of a second enzyme which converts PMEA to PCho has also been reported for leaves and roots of spinach (Weretilnyk and Summers, 1992). The presence of two enzymes with overlapping activities raises questions regarding the roles of these two enzymes in choline metabolism. For example, do these enzymes also have overlapping functions in choline synthesis, particularly under conditions of osmotic stress? / Thesis / Master of Science (MSc)

Functional analysis of some yeast genes

El-Hassi, Mohamed F. January 1997 (has links)
A series of mutant strains of the yeast Saccharomyces cerevisiae that are sensitive to osmotic stress and also have a defect in vacuolar biogenesis have been isolated (M. Latterich, PhD Thesis 1992). The mutations that cause this pleiotropic phenotype are termed ssv, for salt sensitive vacuolar mutants. Complementation analysis has revealed that ssv mutations fall into one of 18 complementation groups. A MAP kinase related signal transduction pathway, termed the HOG pathway for High Osmolarity Glycerol, has been identified in yeast. This pathway senses osmotic stress and invokes the cellular response, one aspect of which is the accumulation of intracellular glycerol (Brewster et. al, 1993). Mutations in the HOG pathway often cause an osmosensitive phenotype similar to that shown by ssv mutations. This work sets out to characterise several ssv strains for defects in the HOG pathway. These strains were subjected to osmotic stress and the intracellular and extracellular glycerol determined and compared to control strains and conditions. Many of the strains showed reduced, or even elevated in one case, glycerol levels compared to wild-type strains. No correlation could be made between these glycerol levels and the activity of the rate-limiting enzyme, glycerol-3-phosphate dehydrogenase (GPDH) determined in an independent study. Transcription of the GPDH gene is under the control of the HOG pathway. In a separate study, the nucleotide sequence of a short region of yeast chromosome VII was determined. Approximately 11,000 bases of DNA from the right sub-telomeric region was sequenced. Analysis of the DNA sequence showed four potential open reading frames. One of these encoded the YORl gene and another a protein related to PAU1 The remaining two ORFs, termed ORFl and ORF2, encoded potential proteins of unknown function. Disruption cassettes containing the LEU2 selectable marker were constructed for both ORFl and ORF2. Successful disruption of ORFl was achieved, but no viable transformants were ever recovered after attempted disruption of 0RF2..ORFl gene knockouts are viable and show no observable phenotype under a range of growth conditions. Subsequent analysis of ORFl and 0RF2 after the completion of the Yeast Genome Project, shows that both ORFl and 0RF2 are members of different sub- telomeric associated gene families. 0RF2 encodes a putative Y' protein.


Singla, Ashima 04 December 2017 (has links)
"When cells are exposed to environmental stress, they respond by compartmentalizing mRNA and translation proteins in stress granulates to protect mRNA. However, the mechanism through which external stress is communicated into the cell to form stress granules is unknown. Phospholipase Cβ (PLCβ) is activated by Gq on the plasma membrane in response to sensory stimuli to initiate calcium signals resulting in a variety of cellular responses. Here, we show that PLCβ binds to major proteins that organize stress granules as well as the main component of the RNA-induced silencing machinery, Argonaute-2 (Ago2). Under stress, PLCβ moves from the plasma membrane to the cytosol to escort Ago2 into stress granules and potentially inhibit mRNA degradation by regulating microRNAs (miRs) expression. Using a model muscle cell line functionally adapted to handle stress, we find that upon osmotic stress, the movement of PLCβ into the cytosol to move Ago2 into stress granules changes the population and distribution of miRs, and in particular, members of the let family. The impact of changes in let is to acutely affect glucose metabolism allowing cells to adapt to stress conditions. Our studies present a model in which PLCβ relays information about external stress to promote stress granule formation and protect mRNAs."

Water as a Physiological Currency: Hydration State Impacts Immune Function, Metabolic Substrates, and Reproductive Investment

January 2019 (has links)
abstract: Environmental changes are occurring at an unprecedented rate, and these changes will undoubtedly lead to alterations in resource availability for many organisms. To effectively predict the implications of such changes, it is critical to better understand how organisms have adapted to coping with seasonally limited resources. The vast majority of previous work has focused on energy balance as the driver of changes in organismal physiology. While energy is clearly a vital currency, other resources can also be limited and impact physiological functions. Water is essential for life as it is the main constituent of cells, tissues, and organs. Yet, water has received little consideration for its role as a currency that impacts physiological functions. Given the importance of water to most major physiological systems, I investigated how water limitations interact with immune function, metabolism, and reproductive investment, an almost entirely unexplored area. Using multiple species and life stages, I demonstrated that dehydrated animals typically have enhanced innate immunity, regardless of whether the dehydration is a result of seasonal water constraints, water deprivation in the lab, or high physiological demand for water. My work contributed greatly to the understanding of immune function dynamics and lays a foundation for the study of hydration immunology as a component of the burgeoning field of ecoimmunology. While a large portion of my dissertation focused on the interaction between water balance and immune function, there are many other physiological processes that may be impacted by water restrictions. Accordingly, I recently expanded the understanding of how reproductive females can alter metabolic substrates to reallocate internal water during times of water scarcity, an important development in our knowledge of reproductive investments. Overall, by thoroughly evaluating implications and responses to water limitations, my dissertation, when combined previous acquired knowledge on food limitation, will enable scientists to better predict the impacts of future climate change, where, in many regions, rainfall events are forecasted to be less reliable, resulting in more frequent drought. / Dissertation/Thesis / Doctoral Dissertation Biology 2019

Structure and Function of the Borrelia burgdorferi Porins, P13 and P66

Bonde, Mari January 2015 (has links)
Borrelia burgdorferi is an elongated and helically shaped bacterium that is the causal agent of the tick-borne illness Lyme disease. The disease manifests with initial flu-like symptoms and, in many cases, the appearance of a skin rash called erythema migrans at the site of the tick bite. If left untreated the disease might cause impairment of various organs such as the skin, heart, joints and the nervous system. The bacteria have a parasitic lifestyle and are always present within a host. Hosts are usually ticks or different animals and birds that serve as reservoirs for infection. B. burgdorferi are unable to synthesize building blocks for many vital cellular processes and are therefore highly dependent on their surroundings to obtain nutrients. Because of this, porins situated in the outer membrane, involved in nutrient uptake, are believed to be very important for B. burgdorferi. Except for a role in nutrient acquisition, porins can also have a function in binding extracellular matrix proteins, such as integrins, and have also been implicated in bacterial adaptation to new environments with variations in osmotic pressure. P13 and P66 are two integral outer membrane proteins in B. burgdorferi previously shown to have porin activities. In addition to its porin function, P66 also has integrin binding activity. In this thesis, oligomeric structures formed by the P13 and P66 protein complexes were studied using the Black lipid bilayer technique in combination with nonelectrolytes. Initial attempts were also made to study the structure of P13 in Nanodiscs, whereby membrane proteins can insert into artificial lipid bilayers in their native state and the structure can be analyzed by electron microscopy. In addition, the role of P13 and P66 in B. burgdorferi osmotic stress adaptation was examined and also the importance and role of the integrin-binding activity of P66 in B. burgdorferi infections in mice. Using Black lipid bilayer studies, the pore forming activity of P13 was shown to be much smaller than previously thought, exhibiting activity at 0.6 nS. The complex formed by P13 was approximately 300 kDa and solely composed of P13 monomers. The channel size was calculated to be roughly 1.4 nm. Initial Nanodisc experiments showed a pore size of 1.3 nm, confirming the pore size determined by Black lipid bilayer experiments. P66 form pores with a single channel conductance of 11 nS and a channel size of 1.9 nm. The porin assembles in the outer membrane into a large protein complex of 420 kDa, containing exclusively P66 monomers. The integrin-binding function of P66 was found to be important for efficient bacterial dissemination in the murine host but was not essential for B. burgdorferi infectivity. Neither P13 nor P66 had an active role in osmotic stress adaptation. Instead, two p13 paralogs were up-regulated at the transcript level in B. burgdorferi cultured under glycerol-induced osmotic stress. / Borrelia burgdorferi är en bakterie med många unika egenskaper som orsakar sjukdomen Lyme borrelios. Borrelia kan idag lätt behandlas med antibiotika om sjukdomen upptäcks i ett tidigt stadium. Det är först om sjukdomen tillåts fortgå som symptom som nervsmärta och ansiktsförlamning kan uppstå och dessutom vara svåra att koppla till en Borrelia-infektion. Multiresistenta bakterier har blivit en stor del av vår vardag och även om Borrelia-bakterierna idag inte är resistenta mot flertalet antibiotika är det kanske speciellt viktigt, innan det är för sent, med forskning som kan leda till upptäckter av unika angreppsställen för nya läkemedel. Målet med denna avhandling var att studera hur två Borrelia proteiner, P13 och P66, ser ut, är uppbyggda och även vilken funktion de har. Dessa proteiner är tänkbara vaccinkandidater eftersom de sitter i yttre membranet hos bakterierna och sticker ut på ytan mot våra värdceller, vilket gör att vi reagerar mot dem vid en infektion. P13 och P66 är också viktiga kanaler för bakterierna vid upptag av näringsämnen och byggstenar från omgivningen. Ämnen som bakterierna inte kan producera själva. Pga. denna funktion är P13 och P66 tänkbara proteiner för blockering med ett läkemedel som skulle förhindra bakterien från att föröka sig i och med att de förlorar möjligheten att tillgodogöra sig näring. Detta i sin tur skulle leda till att vårt eget immunförsvar hinner rensa undan bakterierna innan infektionen blivit för stor och vi blivit sjuka. P66 har förutom porin funktionen även en adhesions funktion när proteinet kan binda integriner som sitter på olika typer av celler i vår kropp, bl. a. immunceller och epitelceller i våra blodkärl och vävnader. Den integrin bindande funktionen är viktig för bakterierna vid en infektion eftersom det gör det möjligt för bakterierna att binda till våra celler. Ett steg som är viktigt för att de senare ska kunna ta sig ut från blodkärlen till våra vävnader. P13 och P66 visade sig kunna bilda stora proteinkomplex i ytter membranet hos bakterierna med en storlek på 300 kDa respektive 420 kDa. De är inga specifika poriner som bara kan transportera en viss typ av molekyl med t.ex. en viss laddning, utan kan ombesörja upptaget av många olika typer av ämnen. Eliminering av p66 orsakade att ett annat adhesionsprotein, uppreglerades. En omplacering av ett normalt cytoplasmatiskt lokaliserat chaperon-protein till ytter-membranet hos bakterierna kunde också ses i frånvaro av P66. Chaperonet GroEL har i andra bakterier, bl. a. Helicobacter pylori, bakterien som orsakar magsår, beskrivits som ett protein som kan förflytta sig till ytan av bakterierna och där ha en liknande funktion som P66, dvs. att binda extracellulära matrisprotein. Förändringen i uttryck av adhesionsproteinet och förflyttningen av chaperonet till membranet var en följd av p66-eliminering och mest troligt ett sätt för bakterierna att komplettera den förlorade integrinbindande funktionen av P66. Det har tidigare visats att poriner är involverade i skyddet mot osmotisk stress i andra bakterier. Denna funktion hos P13 och P66 i Borrelia kunde inte ses när bakterier utsattes för osmotisk stress med glycerol, som orsakar en form av membranstress. Däremot kunde vi med hjälp av transkriptomanalys se att Borrelia-bakterier uppreglerade transkriptionen av två paraloger till P13 vid hyper-osmotisk stress. Borrelia bakteriens användning av dessa paraloga proteiner har tidigare trotts ske enbart i frånvaro av ett funktionellt P13 protein. Nu visade det sig att P13-paraloger har en egen funktion även i närvaro av P13, nämligen att vara involverade i regleringen av hyperosmotisk stress och därmed skydda bakterierna i denna stressituation. Andra gener som påverkades av osmotisk stress med glycerol var gener för stressfaktorer och pumpar i inre membranet hos bakterien.

Investigating osmotic stress in mixed yeast cultures and its effects on wine composition

De Kock, Marli Christel 04 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Grape must gives rise to various stress conditions for the yeast inoculated for alcoholic fermentation. These include hyperosmotic stress due to the high initial sugar concentration and redox imbalances due to the fast depletion of oxygen. Under these stress conditions, Saccharomyces cerevisiae tends to produce glycerol as an osmoprotectant and to regenerate reducing equivalents. However, the production of glycerol often leads to increased acetic acid production. According to literature, it seems that many non-Saccharomyces yeasts have a different metabolic response to the above-mentioned stress conditions, especially since it has been found that they produce low levels of acetic acid. Only recently non-Saccharomyces yeasts were researched to be used as starter cultures in wine fermentations. It is found that they can confer beneficial characteristics to the resulting wine. However, most of the non-Saccharomyces yeasts lead to stuck fermentations as confirmed by this study. Therefore, if the positive characteristics of these yeasts were to be exploited in wine making they need to be inoculated together with S. cerevisiae. When two yeasts are inoculated together, they affect each other and consequently the wine. In this context, the aim of this study was to investigate the metabolic response to hyperosmotic stress during wine fermentation of the following wine-related non-Saccharomyces yeasts: Lachancea thermotolerans, Torulaspora delbrueckii and Starmerella bacillaris. Fermentations were performed in a synthetic grape must medium with pure cultures of the mentioned strains as well as mixed cultures of each non-Saccharomyces yeast with S. cerevisiae. The fermentation behaviour was monitored and concentrations of various wine-related metabolites were determined. Concerning polyol concentrations, S. cerevisiae produced only glycerol while the non-Saccharomyces yeasts also produced other polyols. The low production of acetic acid in the non-Saccharomyces fermentations was confirmed especially in the case of L. thermotolerans. Moreover, this yeast produced high levels of the higher alcohols butanol and propanol. St. bacillaris produced significant levels of acetoin and isobutyric acid and T. delbrueckii produced an increased concentration of succinic acid. All these metabolites might play a role in maintaining intracellular redox balance. However, a more extensive systematic study is needed to investigate the extent of their involvement. The mixed cultures completed fermentation and had higher final glycerol levels than the control and lower acetic acid concentrations and therefore can contribute positively to the wine aroma. Furthermore, the mixed culture fermentations showed the potential of lowering the ethanol concentrations of wine. Furthermore it has been shown in literature that the yeasts present in the mixed culture can affect each other on gene expression level as well. However, there is little genetic information available on non-Saccharomyces yeasts. In this study, we sequenced the genes involved in glycerol and acetic acid biosynthesis of L. thermotolerans and T. delbrueckii. The gene sequences are fairly homologous with only a few differences. These gene sequences can be used to study gene expression of GPD1 and ALD6 from fermentation samples in order to determine to what extent the yeasts in a mixed culture influence the gene expression of one another. / AFRIKAANSE OPSOMMING: Druiwemos gee oorsprong aan verskeie strestoestande vir die gis wat vir alkoholiese fermentasie geïnokuleer word. Hierdie strestoestande sluit hiper-osmotiese stres, as gevolg van die hoë suiker konsentrasie, in asook redoks wanbalanse toegeskryf aan die vinnige afname in beskikbare suurstof. Tydens hierdie toestande is Saccharomyces cerevisiae geneig om gliserol as beskerming teen die osmotiese stres te produseer, sowel as vir die regenereering van reduserings ekwivalente. Die produksie van gliserol lei egter dikwels tot toenemende asynsuur produksie. Volgens literatuur kom dit voor asof menige nie-Saccharomyces giste 'n ander metabolise reaksie tot die bogenoemde stresse het, omdat daar gevind is dat hulle laer vlakke van asynsuur produseer. Eers onlangs is navorsing gedoen op die potensiële gebruik van nie-Saccharomyces giste in gemengde kulture tydens wynfermentasies. Daar is bevind dat hulle voordelige eienskappe aan die wyn kan verleen. Meeste van die nie-Saccharomyces giste lei egter tot onvolledige fermentasies soos bevesting deur hierdie studie. Dus, indien die positiewe eienskappe van hierdie giste sou benut word in wynmaak sal hulle saam met S. cerevisiae geïnokuleer moet word. Wanneer twee giste saam geïnokuleer word, beïnvloed hulle mekaar en gevolglik die wyn. In hierdie konteks was die doel van die betrokke studie om die metaboliese reaksie tot hiperosmotiese stress tydens wynfermentasies te ondersoek in die volgende wyn verwante nie-Saccharomyces giste: Lachancea thermotolerans, Torulaspora delbrueckii en Starmerella bacillaris. Fermentasies was in sintetiese druiwemos medium uitgevoer met rein kulture van die genoemde gisrasse, sowel as gemengde kulture van elke nie-Saccharomyces gis met S. cerevisiae. Die fermentasiegedarg is gemonitor en die konsentrasies van verskeie wyn verwante metaboliete is bepaal. Wat die poliol konsentrasies betref, het S. cerevisiae slegs gliserol geproduseer terwyl die nie-Saccharomyces giste additionele poliole ook geproduseer het. Die lae produksie van asynsuur in die nie-Saccharomyces fermentasies is bevestig, veral in die geval van L. thermotolerans. Verder produseer hierdie gis hoë vlakke van asetoïen en iso-bottersuur en T. delbrueckii produseer 'n hoër konsentrasie van suksiensuur. Al hierdie metaboliete mag 'n rol speel in die handhawing van intrasellulêre redoksbalans. 'n Meer uitgebreide, sistematiese studie is egter nodig om die mate van hul betrokkenheid te ondersoek. Die gemengde kulture het hul fermentasies voltooi en het hoër finale gliserol vlakke as die kontrole gehad, asook laer asynsuur konsentrasies en kan dus positief bydra tot die wyn aroma. Verder het die gemengde kultuur fermentasies die potensiaal om die etanol vlakke van wyn te verlaag, getoon. Daar is verder in die literatuur gevind dat die giste teenwoordig in die gemengde kultuur mekaar op geenuitdrukkings vlak ook kan beïnvloed. Daar is egter min genetiese inligting beskikbaar vir die nie-Saccharomyces giste. In hierdie studie het ons die gene betrokke by die produksie van gliserol en asynsuur van L. thermotolerans en T. delbrueckii se nukleotied volgordes bepaal. Die gevolglike nukleotied volgordes is redelik homoloog met net 'n paar verskille. Hierdie volgordes kan gebruik word om die geenuitdrukking van GPD1 en ALD6 vanaf fermentasie monsters te bestudeer om sodoende te bepaal tot watter mate die giste in 'n gemengde kultuur mekaar se geenuitdukking kan beïnvloed.

The effects of nitric oxide on soybean superoxide dismutase activity during osmotic stress

Jack, Babalwa Unice January 2012 (has links)
>Magister Scientiae - MSc / Nitric oxide (NO) is a signaling molecule involved in mediating plant responses to various biotic and abiotic stresses. Major abiotic stresses (drought, salinity, cold) induce common cellular responses, causing osmotic stress in plants. This results in oxidative stress due to increased production of reactive oxygen species (ROS). The increased ROS levels simultaneously induce the antioxidative system (including antioxidant enzymes such as superoxide dismutase) that regulates ROS toxicity and enhance stress tolerance in plants. It is suggested that the scavenging of ROS by antioxidant enzymes can be controlled by NO. The aim of this study was to evaluate the role of exogenously applied NO on soybean (Glycine max L. Merr.) during osmotic stress, with the purpose of determining the effects of NO on the superoxide dismutase (SOD) activity in response to osmotic stress. This study also aimed at identifying and characterising SOD isoforms induced in soybean in response to osmotic stress and exogenous NO. To achieve these aims, soybean plants were treated with sorbitol (to induce osmotic stress), an NO donor [2,2'-(hydroxynitrosohydrazono)bis-ethanimine, DETA/NO] and its respective control (Diethylenetriamine, DETA). The results showed that exogenous NO alleviated osmotic stress-induced damage by reducing the superoxide radical content, lipid peroxidation levels and also maintaining cell viability in soybean leaves, nodules and roots. Only two SOD isoforms i.e. manganese SOD (MnSOD) and copper/zinc SOD (CuZnSOD) were identified and characterised in soybean leaves and roots, iron SOD (FeSOD) was not induced. The isoforms identified exhibited low SOD activity in response to osmotic stress, with the exception of a few isoforms that had increased activity. The SOD activity was regulated by exogenously applied NO. The enzymatic activity of SOD isoforms was up-regulated by exogenous NO, except for a few SOD isoforms that were not responsive to NO. The results also showed that the increased SOD activity was associated with reduced lipid peroxidation levels. The results obtained from this study suggest that exogenous NO improves osmotic stress tolerance in soybean by regulating and increasing the SOD activity of only specific isoforms. The increased SOD activity maintains the redox homeostasis balance by detoxifying and controlling the superoxide radical levels, subsequently reducing lipid peroxidation and maintaining cell viability.

Page generated in 0.0761 seconds