• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 7
  • 6
  • 1
  • Tagged with
  • 57
  • 57
  • 33
  • 32
  • 24
  • 21
  • 16
  • 9
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Relationship between food structure and drying processes

Williamson, Sarah January 2002 (has links)
No description available.
2

Processing of high quality mango chips

Nunez Gallegos, Yolanda 2009 May 1900 (has links)
Potato chips are very popular in the United States. Recently, an enormous interest in developing snacks from fruits and vegetables with high quality has been assessed. Mango, due to its characteristic flavor and nutritional value, is excellent for snack production. Osmotic dehydration (OD) as a pre-treatment and vacuum frying (1.33 kPa) processes were proposed to obtain high quality mango chips. Mango ?Tommy Atkins? slices were pre-treated with different OD concentrations (40, 50, and 65w/v), times (45, 60, and 70 min), and temperatures (22, 40, and 57oC). Physical and chemical properties (aw, pH, oBrix, sugar gain, water loss, and shrinkage) after OD were studied. The pre-treated slices were vacuum fried (1.33 kPa) at 120, 130, and 138oC and product quality attributes (PQA) (oil content, texture, porosity, color, microstructure, and carotenoid content) were determined. Microstructure of the chips was analyzed using an environmental scanning electron microscope. Effect of frying temperatures at optimum OD (65 w/v at 40oC) times was tested. The consumer tests showed that samples were all acceptable. The best mango chips process was the one with 65 w/v concentration for 60 min (pre-treatment) and vacuum frying at 120oC. Kinetic studies on oil content, texture, porosity, color, and carotenoid retention were performed. Oil absorption was modeled by a fractional conversion kinetic model. Absorption rate constant increased with frying temperature. Diameter changes in the chips, although not significant (P>0.05), followed an initial expansion to later decrease. Thickness of the slices increased (puffed) (around 60%) with time for all frying temperatures. Texture changes were for two frying periods: (1) water removal and crust formation and (2) slices became tougher and crispier and the end of frying. Porosity in the samples increased with frying, and a fractional conversion best described this phenomenon. Color *a (redness) increased with frying time and temperature and was modeled using a logistic model. Color *b (yellowness) increased up to 30 s of frying and then decreased. Carotenoids degradation followed a first order model, with a significant (P<0.05) decrease with frying temperature. Mango chips fried under atmospheric fryer had less carotenoid retention (25%) than with a vacuum fryer.
3

Processing of high quality mango chips

Nunez Gallegos, Yolanda 2009 May 1900 (has links)
Potato chips are very popular in the United States. Recently, an enormous interest in developing snacks from fruits and vegetables with high quality has been assessed. Mango, due to its characteristic flavor and nutritional value, is excellent for snack production. Osmotic dehydration (OD) as a pre-treatment and vacuum frying (1.33 kPa) processes were proposed to obtain high quality mango chips. Mango ?Tommy Atkins? slices were pre-treated with different OD concentrations (40, 50, and 65w/v), times (45, 60, and 70 min), and temperatures (22, 40, and 57oC). Physical and chemical properties (aw, pH, oBrix, sugar gain, water loss, and shrinkage) after OD were studied. The pre-treated slices were vacuum fried (1.33 kPa) at 120, 130, and 138oC and product quality attributes (PQA) (oil content, texture, porosity, color, microstructure, and carotenoid content) were determined. Microstructure of the chips was analyzed using an environmental scanning electron microscope. Effect of frying temperatures at optimum OD (65 w/v at 40oC) times was tested. The consumer tests showed that samples were all acceptable. The best mango chips process was the one with 65 w/v concentration for 60 min (pre-treatment) and vacuum frying at 120oC. Kinetic studies on oil content, texture, porosity, color, and carotenoid retention were performed. Oil absorption was modeled by a fractional conversion kinetic model. Absorption rate constant increased with frying temperature. Diameter changes in the chips, although not significant (P>0.05), followed an initial expansion to later decrease. Thickness of the slices increased (puffed) (around 60%) with time for all frying temperatures. Texture changes were for two frying periods: (1) water removal and crust formation and (2) slices became tougher and crispier and the end of frying. Porosity in the samples increased with frying, and a fractional conversion best described this phenomenon. Color *a (redness) increased with frying time and temperature and was modeled using a logistic model. Color *b (yellowness) increased up to 30 s of frying and then decreased. Carotenoids degradation followed a first order model, with a significant (P<0.05) decrease with frying temperature. Mango chips fried under atmospheric fryer had less carotenoid retention (25%) than with a vacuum fryer.
4

Obtenção de figos secos por desidratação osmotica e secagem convectiva / Osmotic dehydration and convective drying of figs slices

Sousa, Severina de 28 February 2008 (has links)
Orientador: Florencia Cecilia Menegalli / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos / Made available in DSpace on 2018-08-10T02:57:51Z (GMT). No. of bitstreams: 1 Sousa_Severinade_D.pdf: 3233199 bytes, checksum: c69375c3baa9b4be2e41470f3792f663 (MD5) Previous issue date: 2008 / Resumo: O processo de desidratação osmótica figos (Fícus carica, L.) em soluções de sacarose foi investigado com base em um planejamento experimental completo e metodologia de superfície de resposta (RSM). As variáveis independentes foram a concentração de sacarose, variando de 35,9 a 64,1% p/p e a temperatura da solução desidratante de 32,9 a 47,0ºC, a fim de avaliar a cinética da perda de umidade, da incorporação de açúcares e da atividade de água durante o processo. As condições ótimas de desidratação osmótica que geraram dois tipos de produtos, ou seja, figos com maior conteúdo de açúcares e figos com menor conteúdo de açúcares, ambos com menor atividade de água e menor conteúdo de umidade, foram encontradas respectivamente, na temperatura de 39,7ºC e concentração de 63,1% p/p de sacarose, e temperatura de 35,3ºC e concentração de sacarose de 64,1% p/p. A cinética de incorporação de ácido ascórbico foi estudada durante o processo de desidratação osmótica a 44ºC e 36% p/p de concentração da solução, com adição de ácido ascórbico de 100 e 200mg/100g de solução, obtendo-se coeficientes de difusão para a incorporação da vitamina através do modelo difusional de Fick. A avaliação da degradação de vitamina C durante subseqüente secagem mostrou que as perdas de vitamina C podem ser compensadas através de sua incorporação à fruta durante o processo de desidratação osmótica. As isotermas de sorção e a cinética da secagem convectiva foram determinadas às diferentes temperaturas (40, 50, 60 e 70ºC). Para o ajuste dos dados de secagem foram utilizados o modelo difusional de Fick, o modelo de Page e o modelo exponencial com dois termos. Durante a secagem observou-se que a difusividade não foi constante durante todo o período, considerando-se três difusividades distintas ao longo da curva de secagem. As amostras in natura apresentaram maiores coeficientes de difusão de umidade que as amostras desidratadas osmoticamente com sacarose. O tempo de secagem foi reduzido com o processo de desidratação osmótica em todas as temperaturas, especialmente para obtenção da fruta em umidades intermediárias / Abstract: A full experimental design and response surface methodology (RSM) were used to study osmotic dehydration process of figs (Ficus carica, L.) in sucrose solutions. The independent variables were: the sucrose concentration, varying from 35,9 to 64,1% w/w and the solution temperature, varying from 32,9 to 47,0ºC, in order to study the kinetic of water loss, sugars incorporation and water activity during the process. The optimized conditions in osmotic dehydration to obtain two kinds of products: figs with higher content of sugars and figs with lower content of sugars, both of them with lower water activity and water content, had been found respectively, at 39,7ºC and 63,1% w/w and 35,3ºC and 64,1% w/w of temperature and sucrose concentration. The kinetic of ascorbic acid incorporation was studied during osmotic dehydration process at 44ºC, using a solution of 36% of sucrose concentration with an addition of 100 or 200mg of ascorbic acid /100g of solution. The diffusion coefficients for the vitamin incorporation were obtained fitting data with the Fick¿s second law of diffusion. The evaluation of vitamin C degradation during the subsequent drying process showed that the losses of vitamin C can be compensated with the addition of this vitamin in the fruit during osmotic dehydration process. The sorption isotherms and the kinetic of the convective drying were determined at different temperatures (40, 50, 60 and 70ºC). The drying data was fitted with Fick¿s second law of diffusion, the Page model and the Exponential model with two terms. During the drying was observed that the diffusivity was not constant during all period, therefore, were considered three different diffusivities along of the drying curves. The fresh samples had presented higher water diffusion coefficients compared with the samples osmotically dehydrated with sucrose. The drying time was reduced with the use of osmotic dehydration as pretreatment for the several temperatures, especially when the intermediate moisture of fruit was obtained / Doutorado / Doutor em Engenharia de Alimentos
5

Efeito das condições de processo na cinetica de secagem de cogumelo (Agaricus blazei) / Effect of process conditions on drying kinetics of mushrooms (Agaricus blazei)

Kurozawa, Louise Emy, 1980- 20 September 2005 (has links)
Orientador: Fernanda Elizabeth Xidieh Murr / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos / Made available in DSpace on 2018-08-05T02:07:54Z (GMT). No. of bitstreams: 1 Kurozawa_LouiseEmy_M.pdf: 1139488 bytes, checksum: 483f34ed208f1269e0f4f231ab7713a5 (MD5) Previous issue date: 2005 / Mestrado / Mestre em Engenharia de Alimentos
6

Estudo do processo de desidratação osmotica e secagem de files de mapara (Hypophthalmus edentatus)

Ribeiro, Suezilde da Conceição Amaral 28 February 2005 (has links)
Orientador: Satoshi Tobinaga / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos / Made available in DSpace on 2018-08-04T02:31:59Z (GMT). No. of bitstreams: 1 Ribeiro_SuezildedaConceicaoAmaral_D.pdf: 14833718 bytes, checksum: 885ff1d5699fbb022622bd073beda170 (MD5) Previous issue date: 2005 / Doutorado / Engenharia de Alimentos / Doutor em Engenharia de Alimentos
7

Estudo para a agregação de valor aos produtos de caju : elaboração de formulações de fruta e castanha em barras / Study for the aggregation of value to the cashew products: fruit and chestnut in bars formularizations elaborations

Lima, Antonio Calixto 20 October 2004 (has links)
Orientador: Nelson Horacio Pezoa Garcia / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos / Made available in DSpace on 2018-08-04T01:19:17Z (GMT). No. of bitstreams: 1 Lima_AntonioCalixto_D.pdf: 1805819 bytes, checksum: ea139fe6e1ab6890ae9fa0148511ea3b (MD5) Previous issue date: 2004 / Resumo: A pesquisa objetivou contribuir para a redução das perdas do pseudofruto de caju, estimadas em 1 bilhão kg/ano. Realizou-se a desidratação osmótica a vácuo do pseudofruto de caju do clone CCP 76, empregando-se suco de caju clarificado e concentrado a vácuo com 65°Brix como agente osmótico. A partir da Metodologia de Superfície de Respostas foram definidas as combinações do binômio tempo*temperatura que permitem a obtenção dos melhores rendimentos do processo: 40°C/100min e 36°C/140min. Nestas condições obteve-se, respectivamente, perda de peso da ordem de 32,67 e 31,50%, incorporação de sólidos de 5,37 e 6,20% e perda de umidade de 38,58 e 36,37%. Na desidratação osmótica à pressão ambiente de rodelas de pedúnculos de caju, foram testados os fatores tempo (90, 112, 165, 218 e 240min), temperatura (30; 35; 40; 45 e 50°C) e concentração do suco de caju (55, 60, 65, 70 e 75°Brix). Verificou-se aumento da perda de peso, da perda de umidade, de sólidos totais e da incorporação de sólidos com a elevação dos níveis das variáveis independentes. Foram realizados testes de aceitação sensorial de nove formulações que permitiram selecionar três barras de caju cujos pedúnculos foram desidratados por processos de liofilização, em secador solar e por ar quente em estufas, após terem sido submetidos à desidratação osmótica. As três barras de caju selecionadas foram estocadas por 360 dias, e a intervalos de 45-60 dias foram realizadas análises que demontraram serem estáveis física, química e microbiológicamente. As características sensoriais de todas as barras se mantiveram sem alterações e apresentaram boa aceitação ao longo de todo o período de avaliação, recebendo notas para intenção de compra acima de quatro (4) e médias superiores a sete (7) para os atributos textura, aparência, sabor e aceitação global / Abstract: The aim of this research was to contribute to reduction of cashew apple losses, estimated at 1 billion kg/year. Vacuum osmotic dehydration of the cashew apple clone CCP 76 was done using clarified cashew juice concentrated to 65oBrix as the osmotic agent. Response Surface Methodology was used to define the best time temperature combinations: 40°C/100min and 36°C/140min. Under these conditions the following results were obtained, respectively, 32.67 and 31.50% weight loss, 5.37 and 6.20% solids incorporation, 38.58 and 36.37% moisture loss. For the osmotic dehydration at ambient pressure of cashew apple discs, the factors tested were time (90, 112, 165, 218 and 240min), temperature (30, 35, 40, 45 and 50°C) and cashew juice concentration (55, 60, 65, 70 and 75°Brix). Increases in the levels of the independent variables resulted in increases in weight loss, moisture loss and total solids and solids incorporation. Acceptance tests were performed for nine formulations allowing for the selection of three cashew bars, whose peduncles were dried by freeze drying, solar drying and hot air, after being osmotically dried. The three cashew bars selected were stored and analyzed every 45-60 days for their physical, chemical and microbiological stability. The sensoriy characteristics of all the bars remained unchanged and presented good acceptability throughout the period studied, receiving scores for purchase intent above four (4) and averages above seven (7) for the the attributes of texture, appearance, flavor and overall acceptability / Doutorado / Doutor em Tecnologia de Alimentos
8

Fate of Foodborne Pathogens During Osmotic Dehydration and Subsequent Storage of Apples

Ramasamy, Thilahavathy 14 August 2003 (has links)
The fate of E. coli O157:H7 and Salmonella spp. during osmotic dehydration of apples was determined at different processing temperatures, times and calcium chloride (CaCl2) concentrations. Apple slices were inoculated to achieve an 8 log CFU/ apple slice concentration of a five strain mixture of E. coli O157:H7 or Salmonella spp. and were soaked in sucrose solutions (60% w/w). In the first study, apple slices were subjected to osmotic dehydration at three different temperatures: 20°C, 45°C and 60°C. In a second study, CaCl₂ was added in the sucrose solution at concentrations of 2%, 4% and 8% to determine its efficacy as an antimicrobial agent. The storage effect of osmotic dehydrated apples on pathogen survival was also tested for seven days at 4°C. Samples were withdrawn at appropriate time intervals, diluted with 0.1% peptone water and surface plated onto recovery media. Recovery of E. coli O157:H7 was compared on Tryptic Soy Agar + 50 ppm nalidixic acid (TSAN) and MacConkey Sorbitol agar (MCS). Recovery of Salmonella was compared on TSAN and XLD agar. There was lower microbial reduction at the lower temperatures tested with approximately 1.0 and 3.0 log CFU/apple slice reduction at 20°C and 45°C, respectively. The population reduction of cells was highest at 60°C, with an approximate five log reduction for both microorganisms (P<0.001). CaCl₂ used as an additive in the osmotic solution, was associated with slightly higher reduction of both E. coli O157:H7 and Salmonella spp. Greater than a 5 log reduction was observed when the combination of CaCl₂ (8%) and 60°C processing temperature was used. During refrigerated storage E. coli O157:H7 and Salmonella decreased by approximately 4.5 log CFU/apple slice, but were still recoverable via direct plating at Day seven. The results of this study show that the survival of E. coli O157:H7 and Salmonella in osmotically dehydrated fruit is influenced by the osmotic processing method used and the level of additive (i.e., CaCl₂) utilized. Parameters associated with decreased survival of pathogens, and therefore, improve product safety, include increasing temperature and time of processing and increasing concentration of CaCl₂. However, E. coli O157:H7 and Salmonella in artificially contaminated apple slices, survived osmotic dehydration processing and subsequent storage under processing and storage parameters of this study. Therefore, processors who produce osmotically dehydrated fruit must consider the potential food safety impact of the osmotic dehydration processes they choose. / Master of Science
9

Concentration of Osmotic Dehydration Solutions using Membrane Separation Processes

Warczok, Justyna 02 December 2005 (has links)
El procesado de alimentos conlleva, en mayoría de los casos, la generación de subproductos o residuos que pueden ser reutilizados o revalorizados mediante la utilización de técnicas de separación por membrana. Estas técnicas ofrecen la posibilidad de tratar las soluciones en condiciones de operación muy suaves, y no comportan en mayoría de las ocasiones, una alteración de los componentes a recuperar. Actualmente, las técnicas de separación por membrana, debido a su alta calidad y relativamente bajos costes, se encuentran completamente integradas en la mayoría de procesos productivos que requieren de una etapa de separación. Sin embargo, la investigación en el área de las técnicas de separación por membrana sigue abriendo nuevos campos de aplicación, que surgen con la mejora de las condiciones tecnológicas de los equipos y la posibilidad de obtener nuevas membranas adaptables a necesidades específicas.En concreto, en este proyecto se utilizaron técnicas de separación por membranas para concentrar soluciones de azúcar procedentes de deshidratación osmótica (en adelante OD). El principal objetivo fue estudiar el potencial de varias técnicas de separación, haciendo hincapié en los flujos obtenidos durante la reconcentración y en la calidad de la solución reconcentrada.La deshidratación osmótica es un tratamiento que permite una eliminación parcial del agua en un alimento y/o la incorporación de solutos de una manera controlada, respetando la calidad inicial del producto. El proceso consiste en introducir los alimentos en una solución hipertónica, controlando las condiciones de operación para favorecer, en mayor o menor grado la incorporación de solutos y la deshidratación del alimento. La aplicación de OD puede resultar en la mejora de las propiedades nutricionales y funcionales de los alimentos y en la reducción de la energía requerida para la deshidratación. El principal problema de la aplicación industrial de la OD radica en la gestión de la solución procedente del proceso. La reutilización de esta solución plantea una doble ventaja: primero desde el punto de vista ambiental, ya que se elimina un efluente del proceso que a menudo no puede ser vertido directamente, y segundo el ahorro económico que representa la recuperación de las materias primas que muchas veces contienen solutos de importante valor económico. Los métodos de separación por membrana utilizados para recuperar las soluciones de OD fueron los siguientes: nanofiltración, osmosis directa y destilación osmótica por membranas. La nanofiltración (NF) presenta altos niveles de retención y un menor gasto de energía que la osmosis inversa, y en la industria azucarera se aplica como uno de los pasos en la clarificación y concentración de jarabes. En los procesos de contactores de membranas: osmosis directa (DO) y destilación osmótica por membranas (OMD), a diferencia de los procesos basados en el tamizaje, el flujo depende solamente de la diferencia de potencial osmótico. Las únicas presiones hidráulicas requeridas son las necesarias para bombear la solución de azúcar y la solución osmótica hasta la superficie de la membrana. Estas características hacen que estos procesos presenten como muy prometedores para la reconcentración de soluciones de azúcar de concentraciones elevadas.Los experimentos de filtración se llevaron a cabo utilizando plantas piloto diseñadas y construidas expresamente para el presente proyecto. Durante todos los procesos de separación por membranas, se empleó como solución modelo una solución de sacarosa a diferentes concentraciones (5-60 ºBrix), debido a que las soluciones aplicadas en la deshidratación osmótica de frutas son habitualmente soluciones de azucares (sacarosa, glucosa o jarabes). Durante los experimentos de NF se evaluó el funcionamiento de las membranas planas: Desal5 DK (GE- Osmonics), MPF-34 (Koch Membrane), NFT-50 (DSS) y tubulares: MPT-34 (Koch Membrane) y AFC 80 (PCIMembranes). Además de la solución de azúcar de diferentes concentraciones (5-20 ºBrix), se concentraron zumos de pera y manzana.La reconcentración mediante osmosis directa se realizó utilizando dos modos de operación: off-site e on-site. En el modo off-site, la reconcentración por ósmosis directa se llevó a cabo en una planta de filtración provista de un módulo plano o tubular, dependiendo de la membrana. En el módulo se llevó a cabo la concentración. En el modo on-site, la deshidratación se realizaba conjuntamente con la reconcentración de la solución osmótica. La solución de reconcentración de la osmosis directa en off-site (offsiteDO) fue NaCl, mientras la solución de reconcentración de la osmosis directa on-site (on-site DO) fue una solución de sacarosa más concentrada que la solución osmótica (60 para una solución osmótica de 40 y 68 para una solución de 50 ºBrix). Para garantizar el flujo de agua entre las dos soluciones y altas retenciones de azúcar durante la off-site DO, se utilizaron membranas de NF planas (Desal5-DK y MPF-34) y tubulares (MPT-34 y AFC80). La reconcentración por osmosis directa on-site se levó a cabo empleando una membrana de microfiltración (Durapore, Millipore), ya que la solución de reconcentración (SS) es la misma que la solución osmótica y la alta viscosidad de la SS restringe mucho el flujo de agua si se utiliza una membrana más densa.En la deshidratación por membranas (OMD) se utilizaron membranas hidrófobas (11806, Sartorius) que presentan una retención teórica del 100 %. Se comparó el rendimiento de dos soluciones de reconcentración: NaCl y CaCl2.Con el fin de obtener información referente a la influencia de las propiedades de las membranas sobre el desarrollo del proceso de concentración de las soluciones procedentes de la deshidratación osmótica, se realizó un estudio detallado de las propiedades de las membranas aplicadas mediante AFM, SEM, FTIR, ángulo de contacto y medidas de potencial zeta. Con la finalidad de generar soluciones osmóticas para someterlas a reconcentración, y también para disponer de productos procedentes de deshidratación osmótica con soluciones frescas que pudieran compararse con aquellas procedentes de OD con solución reconcentrada, se deshidrataron diferentes lotes de manzana (Granny Smith) con soluciones de sacarosa de 40, 50 y 60 ºBrix. Estas pruebas permitieron determinar también el tímelo de operación para una máxima pérdida de agua con relativamente poca impregnación de las manzanas. Después de cada experimento se analizaron los siguientes parámetros: concentración de azúcar, pH, absorbancia a 420 nm de las soluciones y humedad de las manzanas.La nanofiltración, aplicada en la primera fase del presente estudio, resultó ser viable solamente para la reconcentración de soluciones de concentraciones hasta 24 ºBrix. El aumento de la temperatura de 25 hasta 35 ºC para las dos membranas tubulares ocasionó un incremento del flujo de permeado, y el mismo efecto tuvo el aumento de presión transmembranaria de 8 a 12 bar.Se comprobó que el factor más importante para la eficacia del proceso es disponer de una membrana que combine altos flujos y retenciones durante el proceso. La deposición de las partículas de sacarosa y/o los zumos se caracterizó mediante SEM y la topología de la capa filtrante de la membrana se identificó usando AFM. La topología de la capa filtrante de las membranas era diferente para cada una de ellas, a pesar de que todas estaban preparadas con el mismo material (poliamida). En las imágenes de los cortes transversales de las membranas realizados con SEM, se observaron los cambios en la estructura de las membranas producidos por la aplicación de presión durante los experimentos y las altas temperaturas empleadas durante su acondicionamiento. Gracias a las imágenes de SEM se pudo verificar también la eficacia del proceso de acondicionamiento de membranas.A diferencia de NF, tanto la ósmosis directa como la destilación osmótica por membrana permiten la reconcentración de soluciones concentradas de sacarosa (hasta60 ºBrix). La eficacia de estas dos últimas técnicas se evaluó en unción de los flujos de agua obtenidos.El sistema de ósmosis directa on-site propuesto para la reconcentración de las soluciones de OD permitió reutilizar las soluciones osmóticas como mínimo cuatro veces. Para la solución osmótica de 40 ºBrix la humedad de las manzanas fue similar utilizando solución fresca o reconcentrada. En cambio, una solución osmótica de 50 ºBrix, la pérdida de agua de las manzanas fue mayor cuando la deshidratación osmótica se llevó a cabo con reconcentración on-site de la solución osmótica. Los análisis de concentración de azúcar de las soluciones osmóticas y de la solución de reconcentración indican que la membrana elegida para los experimentos facilita el transporte óptimo de solutos y agua entre las dos soluciones. Además, el sistema de reconcentración por membrana propuesto es muy sencillo y de bajo coste porque no requiere presurización.La osmosis directa en off-site proporcionó flujos mucho mayores que los obtenidos con el sistema on-site (1.3 kg/m2h para la solución osmótica de 50 ºBrix respecto a 0.0023 kg/m2h durante on-site DO para la misma solución). Sin embargo, el transporte de solutos de la solución de reconcentración hacía la solución osmótica puede ser considerado un obstáculo para su aplicación a escala industrial.Los flujos de agua más elevados fueron obtenidos utilizando la OMD (2.01 kg/m2h para la solución osmótica de 50 ºBrix y con CaCl2 con la solución de reconcentración). Otra gran ventaja de este proceso es la retención de solutos que proporciona, hecho confirmado por los análisis realizados.El estudio sobre el transporte durante los procesos de contactores de membranas indicó que la viscosidad es la propiedad limitante para la solución osmótica y la actividad de agua/alta presión osmótica como la propiedad más importante a la hora de elegir una solución de reconcentración. Para todos los procesos de separación aplicados, el aumento de la concentración de azúcar de la solución osmótica comporta una disminución notable del flujo de agua.El desarrollo de un posible proceso de deshidratación osmótica con una etapa de reconcentración de la solución osmótica mediante procesos con contactores de membrana ha permitido calcular el área requerida para realizar la reconcentración: 3.6,9.7, 1608 m2 para OMD, off-site DO e on-site DO, respectivamente.Las conclusiones del trabajo confirman la posibilidad de utilizar procesos por membrana para realizar la reconcentración de soluciones osmóticas. No obstante se ha constatado que técnicas más tradicionales basadas en diferencias de presión (NF) no son
10

Drying characteristics of Saskatoon berries under microwave and combined microwave-convection heating

Reddy, Lakshminarayana 20 March 2006
The study on dehydration of frozen saskatoon berries and the need for dried fruits has been strategically identified in the prairies. Our motivation was to find a suitable method for dehydration in order to extend saskatoon berry shelf life for preservation. Microwave, convection and microwave-convection combination drying processes were identified to finish-dry saskatoon berries after osmotic dehydration using sucrose and high fructose corn syrup (HFCS) sugar solutions. Osmotic dehydration removes moisture in small quantities and also introduces solutes into the fruit that acts as a preservative and also reduces the total drying time. <p>Due to the very short harvesting season of saskatoon berries, an accelerated process like microwave combination drying can bring down the moisture to safe storage level, immediately after harvest. Untreated and osmotically dehydrated berries were subjected to convection (control), microwave and microwave-convection combination drying conditions at different product drying temperatures (60, 70 and 80C) until final moisture content was 25% dry basis. A laboratory-scale microwave combination dryer was developed, built with temperature and moisture loss data acquisition systems using LabView 6i software. Thin-layer cross flow dryer was used for convection-only drying and for comparison. <p>Drying kinetics of the drying processes were studied and curve fitting with five empirical equations including Page equation, was carried to determine drying constant, R2 and standard error values. The microwave-combination drying method proved to be the best for drying saskatoon berries. Dehydrated product quality analysis by means of color changes, rehydration ratio measurements and observed structural changes with scanning electron microscope technique were the factors in drying method selection for saskatoon berries.<p> This research was instrumental in the modification and development of a novel drying system for high-moisture agricultural materials. Microwave-convection combination drying at 70oC, yields good results with higher drying rates and better end-product quality.

Page generated in 0.136 seconds