Spelling suggestions: "subject:"electroactive polymers"" "subject:"électroactive polymers""
1 |
On different classes of constitutive descriptions in finite electro-mechanics: Computational modelling of isotropic and anisotropic electro-active materialsKanan, Anas, Kaliske, Michael 16 January 2025 (has links)
Various constitutive formulations can be employed to simulate the coupled behaviour of electro-active polymers (EAP). Those distinct mathematical descriptions vary with respect to the manner in which the electric field is coupled to the deformation. However, in principle, they are all capable of emulating the finite coupled response of EAP. The underlying coupling mechanism of largely deformable materials can be identified through experimental characterization. This contribution addresses the constitutive and finite element modelling of the actuation response of both isotropic and anisotropic EAP, where different material formulations are considered and implemented within a finite element framework. Those various material formulations are mathematically treated and employed to simulate electro-mechanical experiments of dielectric materials. Existing coupled electro-mechanical tests of active materials are referred to, where it is sought to employ different constitutive models to fit the experimental observations. Within the undertaken study, the capability of different descriptions to predict electro-mechanical instabilities is evaluated. Regarding the numerical implementation of the model, it is referred to an electro-mechanical Q1P0 finite element formulation. After performing the study and fitting experimental results associated to isotropic materials, the actuation response of several anisotropic EAP-based structures is emulated.
|
2 |
Nouveaux concepts de robots à tubes concentriques à micro-actionneurs à base de polymères électro-actifs / New concept of concentric tube robots with micro-actuators based on electro-active polymersChikhaoui, Mohamed Taha 17 November 2016 (has links)
L’utilisation de systèmes robotiques pour la navigation dans des zones confinées pose des défis intéressants sur les thèmes de conception, de modélisation et de commande, particulièrement complexes pour les applications médicales. Dans ce contexte, nous introduisons un nouveau concept de robots continus, fortement prometteurs pour des applications biomédicales, dont la forme complexe, la dextérité et la capacité de miniaturisation constituent des avantages majeurs pour la navigation intra corporelle. Parmi cette classe, les robots à tubes concentriques (RTC), qui constituent notre point de départ, sont améliorés grâce à un actionnement embarqué innovant. Nos travaux s’articulent autour de deux thématiques aux frontières de l’état de l’art. D’une part, nous avons proposé une modélisation générique et conduit une analyse cinématique approfondie de robots continus basés sur l’architecture des RTC standards et ceux avec changement de courbure de leurs tubes dans deux variantes : courbures unidirectionnelle et bidirectionnelle. D’autre part, leur commande cartésienne en pose complète est introduite avec une validation expérimentale sur un prototype développé de RTC standard, ainsi que les simulations numériques d’une loi de commande comprenant la gestion de la redondance des RTC à changement de courbure. D’autre part, nous avons effectué la synthèse, la caractérisation et la mise en œuvre de micro-actionneurs souples basés sur les polymères électro-actifs (PEA), intégrés pour la première fois dans un robot continu.Ainsi, l’asservissement visuel d’un prototype de robot télescopique souple est proposé avec des précisions atteignant 0.21 mm sur différentes trajectoires. / Major challenges need to be risen in order to perform navigation in confined spaces with robotic systems in terms of design, modeling, and control, particularly for biomedical applications. Indeed,the complex shape, dexterity, and miniaturization ability of continuum robots can help solving intracorporeal navigation problems. Within this class, we introduce a novel concept in order to augment the concentric tube robots (CTR) with embedded actuation. Our works hinge on two majorcutting-edge thematics. On the one hand, we address modeling and kinematics analysis of standard CTR as well as variable curvature CTR with their two varieties : single and double bending directions.Furthermore, we perform the experimental validation of Cartesian control of a CTR prototype, anda task hierarchy based control law for redundancy resolution of CTR with variable curvatures. Onthe other hand, we develop the synthesis, the characterization, and the integration of soft microactuatorsbased on electro-active polymers (EAP) for the first time in a continuum robot. Thus, thevisual servoing of a telescopic soft robot is performed with precisions down to 0.21 mm following different trajectories.
|
Page generated in 0.0725 seconds