• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • Tagged with
  • 23
  • 23
  • 9
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Cyclic Biamperometry

Rahimi, Mohammad Mehdi 05 August 2009 (has links)
In this thesis, cyclic biamperometry (CB) as a new method in electrochemistry, has been introduced and investigated. The hallmark of this method is the absence of a reference electrode which potentially allows simplification and miniaturization of the measurement apparatus. Similarities and differences of this method and cyclic voltammetry (CV) have been studied and it was shown that under conditions of using standard electrodes, CB has a better sensitivity and a lower detection limit than CV. A new equivalent circuit model for the cell has been proposed and parameters affecting the sensitivity of CB, such as keeping the concentration of one redox species in excess and having a larger W2 electrode, have been described. The redox cycling effect in biamperometric systems has been investigated and it is shown that improvements of at least two orders of magnitude in sensitivity can be achieved by using interdigitated electrodes (IDEs). In addition, an example for applications of this method, including biamperometric dead-stop titration of 1-naphthol with ferricyanide, has been presented and possible fields in which CB can be incorporated (e.g. monitoring the activity of alkaline phosphatase) have been illustrated. Finally, a few suggestions for future studies and further improvements have been outlined.
12

Desenvolvimento de método de determinação de glicerol livre em biodiesel utilizando a técnica de varredura sucessiva de potencial /

Lourenço, Leandro Maranghetti. January 2009 (has links)
Orientador: Nelson Ramos Stradiotto / Banca: Éder Tadeu Gomes Cavalheiro / Banca: Ernesto Chaves Pereira de Souza / Banca: Marcelo Firmino de Oliveira / Banca: Devaney Ribeiro do Carmo / Resumo: constituído por uma mistura de ésteres metílicos e/ou etílicos de ácidos graxos. É comumente obtido por meio da reação de transesterificação de triacilgliceróis, produzindo como subproduto o glicerol, considerado seu principal contaminante. A presença deste contaminante no biodiesel traz diversos inconvenientes que podem ocasionar baixo desempenho nos atuais motores e deterioração nos tanques de combustível. A determinação da qualidade do biodiesel é, portanto, de grande importância para aceitação e comercialização do biodiesel e de suas misturas com o diesel. Desta forma, o presente trabalho descreve o desenvolvimento de um método eletroanalítico rápido, sensível, barato e capaz de quantificar o glicerol livre em amostras de biodiesel tipo B100. Parâmetros como acidez, velocidade de varredura e número de ciclos sucessivos voltamétricos foram otimizados, possibilitando grande precisão e estabilidade ao método eletroanalítico desenvolvido. Um rápido método de extração foi desenvolvido, onde uma massa de 2 a 4 g de biodiesel (com precisão de 0,1 mg) é pesada em tubos de ensaio com posterior adição de 6 mL de água, seguida de etapas de agitação, separação de fase aquosa, purificação em cartuchos do tipo C18 e rotoevaporação. As condições eletroanalíticas empregadas foram: concentração analítica de ácido perclórico de 100 mmol L-1, velocidade de varredura de 100 mV s-1 e realização de 20 ciclos sucessivos voltamétricos entre os potenciais de -140 e 1300 mV versus Ag/AgCl(sat). O método eletroanalítico desenvolvido mostra-se promissor, com um limite de detecção estimado de 2,3 mg L-1 (2,5 × 10-2 mmol L-1) para o glicerol. Foi obtida uma excelente linearidade entre 15 e 150 mg L-1 (0,16 e 1,6 mmol L-1) em meio aquoso, que corresponde a uma faixa de trabalho de 56 a 560 mg kg-1 (glicerol:biodiesel) quando uma massa de 2 g de biodiesel... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Biodiesel is a renewable, biodegradable alternative to diesel consisting of a mixture of methyl and/or ethyl esters of fatty acids. It is usually produced from the transesterification reaction of triacylglycerols, and a by-product of this reaction is glycerol, the main contaminant of biodiesel. The presence of glycerol in biodiesel is inconvenient for a number of reasons: it may be responsible for the low performance of engines and deterioration of fuel tanks. Therefore, biodiesel quality control is of utmost importance for the commercialization of this fuel and its mixtures with diesel. In this sense, the present work describes the design of a fast, sensitive, inexpensive electroanalytical method for determination of free glycerol in biodiesel samples of the B100 type. Parameters such as acidity, scan rate, and number of successive voltammetric cycles were optimized, conferring large precision and stability to the designed electroanalytical method. A fast extraction method was also developed, in which 2 to 4 g of biodiesel (with a precision of 0.1 mg) is weighed in test tubes, with further addition of 6 mL of water, followed by stirring steps, aqueous phase separation, purification in cartridges of the C18 type, and rotaevaporation. The eletroanalytical conditions employed in the analysis were: perchloric acid analytical concentration of 100 mmol L-1, scan rate equal to 100 mV s-1, and the performance of 20 successive voltammetric cycles between -140 and 1300 mV versus Ag/AgCl(sat). The designed eletroanalytical method proved to be a promising analytical tool, with an estimated detection limit of 2.3 mg L-1 (2.5 × 10-2 mmol L-1) for glycerol. An excellent linearity was obtained between 15 and 150 mg L-1 (0.16 and 1.6 mmol L-1) in aqueous medium, which corresponds to a work range from 56 to 560 mg kg-1 (glycerol:biodiesel) when a mass of biodiesel of 2 g is employed in the extraction... (Complete abstract click electronic access below) / Doutor
13

Desenvolvimento de método de determinação de glicerol livre em biodiesel utilizando a técnica de varredura sucessiva de potencial

Lourenço, Leandro Maranghetti [UNESP] 15 July 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:35:06Z (GMT). No. of bitstreams: 0 Previous issue date: 2009-07-15Bitstream added on 2014-06-13T19:05:17Z : No. of bitstreams: 1 lourenco_lm_dr_araiq.pdf: 1689549 bytes, checksum: 7855920479cda20853107254ee14614c (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / constituído por uma mistura de ésteres metílicos e/ou etílicos de ácidos graxos. É comumente obtido por meio da reação de transesterificação de triacilgliceróis, produzindo como subproduto o glicerol, considerado seu principal contaminante. A presença deste contaminante no biodiesel traz diversos inconvenientes que podem ocasionar baixo desempenho nos atuais motores e deterioração nos tanques de combustível. A determinação da qualidade do biodiesel é, portanto, de grande importância para aceitação e comercialização do biodiesel e de suas misturas com o diesel. Desta forma, o presente trabalho descreve o desenvolvimento de um método eletroanalítico rápido, sensível, barato e capaz de quantificar o glicerol livre em amostras de biodiesel tipo B100. Parâmetros como acidez, velocidade de varredura e número de ciclos sucessivos voltamétricos foram otimizados, possibilitando grande precisão e estabilidade ao método eletroanalítico desenvolvido. Um rápido método de extração foi desenvolvido, onde uma massa de 2 a 4 g de biodiesel (com precisão de 0,1 mg) é pesada em tubos de ensaio com posterior adição de 6 mL de água, seguida de etapas de agitação, separação de fase aquosa, purificação em cartuchos do tipo C18 e rotoevaporação. As condições eletroanalíticas empregadas foram: concentração analítica de ácido perclórico de 100 mmol L-1, velocidade de varredura de 100 mV s-1 e realização de 20 ciclos sucessivos voltamétricos entre os potenciais de -140 e 1300 mV versus Ag/AgCl(sat). O método eletroanalítico desenvolvido mostra-se promissor, com um limite de detecção estimado de 2,3 mg L-1 (2,5 × 10-2 mmol L-1) para o glicerol. Foi obtida uma excelente linearidade entre 15 e 150 mg L-1 (0,16 e 1,6 mmol L-1) em meio aquoso, que corresponde a uma faixa de trabalho de 56 a 560 mg kg-1 (glicerol:biodiesel) quando uma massa de 2 g de biodiesel... / Biodiesel is a renewable, biodegradable alternative to diesel consisting of a mixture of methyl and/or ethyl esters of fatty acids. It is usually produced from the transesterification reaction of triacylglycerols, and a by-product of this reaction is glycerol, the main contaminant of biodiesel. The presence of glycerol in biodiesel is inconvenient for a number of reasons: it may be responsible for the low performance of engines and deterioration of fuel tanks. Therefore, biodiesel quality control is of utmost importance for the commercialization of this fuel and its mixtures with diesel. In this sense, the present work describes the design of a fast, sensitive, inexpensive electroanalytical method for determination of free glycerol in biodiesel samples of the B100 type. Parameters such as acidity, scan rate, and number of successive voltammetric cycles were optimized, conferring large precision and stability to the designed electroanalytical method. A fast extraction method was also developed, in which 2 to 4 g of biodiesel (with a precision of 0.1 mg) is weighed in test tubes, with further addition of 6 mL of water, followed by stirring steps, aqueous phase separation, purification in cartridges of the C18 type, and rotaevaporation. The eletroanalytical conditions employed in the analysis were: perchloric acid analytical concentration of 100 mmol L-1, scan rate equal to 100 mV s-1, and the performance of 20 successive voltammetric cycles between -140 and 1300 mV versus Ag/AgCl(sat). The designed eletroanalytical method proved to be a promising analytical tool, with an estimated detection limit of 2.3 mg L-1 (2.5 × 10-2 mmol L-1) for glycerol. An excellent linearity was obtained between 15 and 150 mg L-1 (0.16 and 1.6 mmol L-1) in aqueous medium, which corresponds to a work range from 56 to 560 mg kg-1 (glycerol:biodiesel) when a mass of biodiesel of 2 g is employed in the extraction... (Complete abstract click electronic access below)
14

Eletrodos modificados por óxido de tungstênio: Métodos de preparação e aplicações analíticas / Modified Electrodes with Tungsten Oxide: Preparation Methods and Analytic Applications

José Roberto Caetano da Rocha 23 January 2006 (has links)
Neste trabalho são apresentados resultados da eletrodeposição de MoOx e de WOx em eletrodos de carbono vítreo e em eletrodos de ouro. A estabilidade de filmes de WOx foi investigada em diferentes valores de pH utilizando voltametria cíclica e microbalança eletroquímica de cristal de quartzo e observou-se que estes filmes são estáveis em soluções com valores de pH inferiores a 3. O processo eletrocatalítico envolvendo a redução de IO3- em superfícies recobertas com WOx foi comparado com aquele observado em eletrodo modificado com MoOx, observando-se as vantagens deste processo em superfícies modificadas com WOx. Discutiram-se ainda os resultados obtidos do processo da oxidação de óxido nítrico na superfície eletródica polida e modificada com WOx. Também são apresentados resultados de estudos comparativos sobre a redução do IO3-, BrO3- e ClO3- na superfície modificada, concluindo-se que no caso do IO3- obtêm-se maiores valores de corrente devido à maior polarizabilidade do átomo de iodo em relação aos outros dois halogênios. Estudos envolvendo a permeabilidade de íons IO3- e Fe(CN)63- em filmes de WOx foram realizados por voltametria com eletrodos rotativos percebendo-se que filmes mais espessos apresentam pouca permeabilidade. Eletrodos recobertos por filmes de WOx foram utilizados como sensores amperométricos para iodato. Para tanto, desenvolveu-se método em fluxo para IO3- em uma faixa de concentração de 5 a 5000 mmol/L, com limite de detecção estimado em 210 nmol/L. A repetibilidade do método para 41 injeções de solução 80 mmol/L de IO3- foi de 98,3 %. Também foram realizados ensaios para determinar o analito em amostras de sal de cozinha e os dados obtidos foram concordantes com os resultados oriundos do uso de método oficial. / Thin films of non-stoichiometric tungsten oxides have been deposited onto glassy carbon surfaces by electrodeposition from acidic W (VI) solutions. At these modified surfaces, rotating disc electrode voltammetric experiments indicated that iodate is electrocatalytically reduced in a mass-transport controlled process. The influence of the film thickness on the response to iodate was investigated and the results suggested a reaction occurring at the film/solution interface. The modified electrode was employed successfully as an amperometric sensor for iodate in a flow injection apparatus. The linear response of the developed method is extended from a 5 mmol L-1 to 5 mmol L-1 iodate with a limit of detection (signal-to-noise = 3) of 210 nmol L-1. The repeatability of the method for 41 injections of an 80 mmol L-1 iodate solution was 98,3 % and the throughput was determined as 123 injections h-1. Interference from other oxidant anions such as nitrate and nitrite was not noticeable, whereas bromate and chlorate interfere at slight levels. The method was used in the determination of the iodate content in commercial salt samples.
15

ELECTROANALYTICAL PAPER-BASED SENSORS FOR IN-FIELD DETECTION OF CHLORATE-BASED EXPLOSIVES AND QUANTIFICATION OF OXYANIONS

Carolina Guimaraes Vega (15339037) 18 May 2023 (has links)
<p> </p> <p><em>Improvised explosive devices (IEDs) are a global threat due to their destructive potential, the easy access to raw materials, and online instructions to manufacture them. These circumstances have led to an increase in the number of IEDs using potassium chlorate as an oxidizer. The standard methods to detect chlorate are mainly designed for laboratory-only testing. Thus, field instrumentation capable of detecting oxidizers from explosives fuel-oxidizers is critical for crime scene investigation and counterterrorism efforts (described in Chapter 1). We developed a paper-based sensor for the in-field detection of chlorate (described in Chapter 2). The sensor is low-cost, disposable, portable, and inexpensive to fabricate, and its flexibility features allow for surface sampling without sample destruction. The sensor has an electrodeposited molybdate sensing layer, as chlorate was reported to have a catalytic effect on the molybdate reduction. The chlorate detection relies on monitoring the change in redox activity of the molybdate sensing layer using different electroanalytical techniques. We effectively demonstrated the analytical performance of the sensor (Chapter 3), obtaining a limit of detection of 1.2 mM and a limit of quantification of 4.10 mM. We evaluated the selectivity of the sensor by testing other oxidizers, such as perchlorate and nitrate, which did not present any electrochemical activity with the molybdate sensing layer.</em></p> <p><em>Additionally, we performed an interferent study with sugar, commonly used as fuel in IEDs, and other common white household powders such as baking soda, flour, and corn starch and neither a false positive nor a false negative result was observed (Chapter 3). As bromate has been reported to have a stronger catalytic effect than chlorate on the redox activity of molybdate, the quantification of bromate was also explored, and a bromate sensor was developed using the findings of the chlorate sensor (Chapter 4). The reaction mechanism involved in the molybdate</em></p> <p><em>reduction was explored and discussed in Chapter 5. The capability of the sensor in detecting chlorate from combusted samples and post-blast samples was successfully demonstrated in Chapter 6, as well as the design of encased prototypes to allow for an in-field presumptive test, storage, and transport for in-laboratory confirmatory tests and compared the performance of the sensor to the available commercial tests.</em></p>
16

Electrochemical Characterization of Common Cutting Agents Found in Illicit Drugs

George G Hedlund (16618584) 30 August 2023 (has links)
<p>  </p> <p>Nationwide use of illicit drugs has continued to rise over the last few decades, with more than a two-fold increase in global seizures from 2016 and 2020. Most seized drug samples are complex mixtures of drugs and cutting agents, which can complicate the detection and quantification of the illicit drugs in the sample. The presence of these cutting agents can however be beneficial for source tracing purposes, as the majority of cutting agents are selected based on availability in the area where the bulk drug was prepared. The goal of this work was to conduct a systematic study of the electrochemical characteristics of the most common cutting agents found in illicit drugs using unmodified, commercially available glassy carbon electrodes. The long-term goal is to establish an extensive database of electrochemical characterizations of cutting agents and illicit drugs encountered by law enforcement using unmodified, commercially available electrodes to help expand the developing field of forensic electrochemical analyses. This database could then be referenced for the identification of unknown samples to determine the presence of possible illicit drugs and cutting agents that are present to help guide the analyst in further testing.</p> <p>The standard methods for drug detection include a combination of laboratory testing and field-deployable assays ranging from colorimetric tests to gas chromatography-mass spectrometry instrumentation. These detection methods, as well as relevant literature were investigated in Chapter 1. The most used screening methods for illicit drugs are colorimetric tests; however, these assays are prone to false positives. Chapter 1 introduces the existing applications and current research efforts in forensic electrochemistry by describing relevant electrochemical sensors and methods and examining in particular their performance regarding accuracy, sensitivity, and low-cost claims. This overview highlights the broad possibilities of electrochemical analysis in forensics as well as the opportunities when applied to detection and quantification of illicit drugs, demonstrating the current needs for more systematic and consistent characterizations of cutting agents found in seized-drug samples. Chapter 2 details the material, reagents, and experimental conditions, showing their simplicity, and the standard electrochemical and preparative equipment used geared towards an easy implementation in any analytical laboratory. Chapter 3 describes the systematic voltametric characterizations performed on thirteen common cutting agents: phenacetin hydrochloride, levamisole hydrochloride, diphenhydramine hydrochloride, quinine, acetaminophen, ascorbic acid, caffeine, lactose, inositol, mannitol, glucose, sodium bicarbonate and calcium carbonate. In addition to the common, information-rich cyclic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV) were used as these pulsed electroanalytical methods are typically considered more sensitive than CV and often employed for quantitative analyses of species present at low concentrations (Chapter 3). Overall, DPV resulted in voltammograms with peaks shaped closer to the ideal redox peaks, also referred to as ‘better defined’, thus enhancing the analytical performance of the assay. For example, In the analysis of diphenhydramine hydrochloride, DPV permitted the measurement of an oxidation with a peak displayed at 1.0 V vs Ag/AgCl, which was not observable when performing CV or SWV. On the other hand, SWV provided noticeably greater intensities of peak current, which allowed for a better detection of the difficult-to-observe redox reactions of quinine occurring at -0.4, 0.0 and 0.4 V vs Ag/AgCl.</p> <p>Some chemical species when present in seized drugs can alter the pH of the tested samples, such as ascorbic acid. Changes in pH will impact the redox activity of the pH-dependent electroactive species present in a sample, thus we investigated how pH of the solvent affected the observation of the redox peaks of those susceptible cutting agents, namely ascorbic acid, quinine, diphenhydramine hydrochloride, and levamisole hydrochloride (Chapter 4). Of particular interest was a significant change in the electrochemical characterization of these species when the pH was varied around their pKa values. Additionally, the composition of the solvent, or supporting electrolyte (SE) solution, can in some cases result in interactions with the analytes in the sample; the study of caffeine with different SE in Chapter 4 illustrates this situation. Specifically, sulfuric acid was the most suited SE of those tested for caffeine analysis.</p> <p>The impact of successive voltametric scans, on the analysis of chemical species were also investigated, using acetaminophen and quinine, demonstrating the development of additional redox peaks in some situations that could provide additional elements towards a more individualized electrochemical profile for cutting agents (Chapter 4). </p> <p>The influence of the material of the working electrode on the electrochemical characterization of cutting agents was explored. Solutions of ascorbic acid, acetaminophen, quinine, and diphenhydramine hydrochloride were electrochemically characterized using a glassy carbon and a platinum working electrode, while ascorbic acid was also characterized on gold and silver electrodes. These examples demonstrate the adaptability of this electroanalytical method with various commonly used electrodes. (Chapter 4). In Chapter 5, we applied similar electrochemical method to the identification of cutting agents and illicit drugs in two-component mixtures. Specifically, these trials included mixtures of fentanyl with a cutting agent at a relative ratio of 1 : 100, using as cutting agents ascorbic acid, diphenhydramine hydrochloride, or glucose, demonstrating the ability of this simple electrochemical method using common commercial electrodes to simultaneously detect illicit drugs and cutting agents. </p>
17

<b>Confined Multiphase Electrochemistry</b>

Kathryn J Vannoy (18115249) 06 March 2024 (has links)
<p dir="ltr">Scientists across many disciplines have observed a striking phenomenon: chemical reactions that do not appreciably occur in large volumes often proceed readily in microdroplets. At the core of suggested mechanisms is the influence of interfacial chemistry on the overall reaction; when the interfacial area dominates the reactor volume, the measured reaction rate is often accelerated. For instance, microdroplets with a high surface area-to-volume ratio (generally with radii smaller than 10 µm) provide a unique reaction environment and have been observed to accelerate a wide variety of chemical reactions. This is likely surprising to most readers, as much of our chemical intuition comes from experiments performed on benchtops in beakers (large, single-phase systems). However, microdroplets are regularly exploited by nature, from multiphase atmospheric aerosols to biomolecular condensates in cells. Thus, it is vital to have measurement tools capable of studying multiphase, nanoscale reactors. An electrochemical perspective on measuring multiphase chemistry under nanoconfinement is given in Chapters 2-4. To my knowledge, there were no reports of accelerated reactivity in microdroplets from electrochemical studies until the 2021 observation that enzyme turnover rates are inversely-related to the size of the containing nanodroplet (given in Chapter 6). In this dissertation work, we developed new electroanalytical tools to probe chemical transformations/reactions at micro- and nano-interfaces and made use of new reaction schemes that capitalize on multiphase microenvironments.</p><p dir="ltr">Much of the method development was built on the foundation of stochastic nanoelectrochemistry, a technique that is reviewed thoroughly in Chapters 2, 4, and 5. Briefly, stochastic nanoelectrochemistry is the measurement of single nano-entities, one-at-a-time, as the collide with a micron-sized electrode. The nano-entities studied in this dissertation were aqueous droplets, either suspended in an immiscible oil continuous phase or propelled through air. We dove deeply into these studies, from using correlated microscopy to watch how these micro- and nanodroplets collide with other interfaces to building simulations to quantify changes to the chemistry inside. We showed how the surface environment directs water nanodroplet collisions (Chapter 10) and measured the sub-diffraction-limited nanometer contact area that forms between a microdroplet and a metal surface (Chapter 11). Using the nanodroplets as tiny reactors, we measured accelerated rate constants and promoted unfavorable nucleation events in attoliter-femtoliter aqueous droplets (see Chapter 6-7 and Chapter 12, respectively) and in microliter aqueous droplets (see Chapter 8 and Chapter 9, respectively).</p><p dir="ltr">As mentioned above, microdroplets are ubiquitous in air (<i>e.g.,</i> aerosols). However, electrochemistry is not an obvious choice for the measurement of intact aerosols because electrochemistry is traditionally performed in a conductive solution, and electrochemistry in air is difficult. In this dissertation we laid the groundwork for a path forward that allows electrochemical access the air|microdroplet interface. We designed and characterized a novel electrochemical cell, where the working electrode is a microwire traversing a suspended liquid film (Chapters 13-15). The early results were born from pure curiosity: Can we do electrochemistry in a soap bubble wall? Chapter 13 shows that the answer is “Yes!”, and that electrochemistry can report on aerosol contents that are collected from the air into this thin film. However, the soap bubble wall was severely limited by the lifetime of the bubble wall (bubbles pop), so in Chapters 14 and 15, we introduce a suspended ionic liquid film that does not pop from evaporation. With the more robust system, we realized the ability to probe intact single microdroplets, one-at-a-time (Chapter 14), giving electrochemical access to the air|water interface.</p><p dir="ltr">As detection of illicit substances from aerosols has the potential for immediate impact on first responder, user, and bystander safety, we employed the new technology to electroanalyze aerosolized methamphetamine (Chapter 13) and fentanyl (Chapter 15). Electrochemistry is small, simple, and affordable, making it a realistic candidate for an in-field sensor. We overcame selectivity challenges by using our understanding of interfacial microenvironments to leverage local pH changes, as demonstrated by the reliable detection of low purity cocaine in mixed powders (Chapter 16). This patented method provides a highly selective technique for cocaine identification in the presence of adulterants without the need to bring any chemicals to the scene (water is our only reagent!).</p><p dir="ltr">In sum, this body of work contributes to the electrochemical studies in nano- and microdroplets, extending the reach to account for droplet size on measured rates and to include microdroplets with a water|air boundary. Applications of the work were focused on in-field detection of illicit substances.</p>
18

MINIATURIZABLE POTENTIOMETRIC BIOSENSING TOOLS

Nicole Leigh Walker (15847931) 30 May 2023 (has links)
<p>  </p> <p>As our ability to make more sensitive measurements increases, we begin to reach for the ultimate measurement sensitivity: a single entity. Mass spectrometry and fluorescence-based methods exist for single entity studies, and through these the intriguing effects of confinement begin to be observed. These mass spectrometry and fluorescence-based techniques are however, often destructive, which precludes measurements over time. The advent of nanoelectrochemical methods, however, allows for the creation of tools that can make measurements inside of confined volumes—a droplet, a cell, <em>etc</em>.—over extended periods of time. While most nanoelectrochemical methods are based on amperometry or voltammetry, potentiometry allows for minimal perturbation of the system’s homeostasis by passing negligible current.</p> <p>To overcome many of the issues involved in these other methods, we design potentiometric tools that can be easily miniaturized to fit within single entities, particularly within single cells. These tools include enzymatic biosensors designed to be minimally influenced by the cell’s O2 or NAD+ levels, as well as a novel reference electrode that can be made to be very low leakage or completely leakless to avoid contamination of the cell by the reference electrode’s internal filling solution. Both of these tools are designed such that they are easily modified to suit a number of different applications, including for use inside non-aqueous solutions.</p>
19

Unlocking Microdroplet Curious Chemistry through Single Entity Electrochemistry

Lynn Elizabeth Krushinski (19831611) 10 October 2024 (has links)
<p dir="ltr">Microdroplets (typically less than 10 μm in radius) have proven to be unique reaction vessels capable of doing the seemingly impossible: drive the chemistry that could have made life possible. While I am not a biochemist here to explain the intricacies of such a claim, I am a measurement scientist who has worked for the past three and half years to develop new methods which can be used to unveil new chemistries in these droplets. Before electrochemists like me entered the microdroplet realm, mass spectrometrists spent years studying droplets at this scale (typically generated with electrospray methods) and have been able to show that these droplets can promote reaction acceleration by several orders of magnitude, spontaneous generation of reactive species such as water and hydroxide radicals as well as hydrogen peroxide, and other curious chemistries. While these studies have changed the way that scientists view microdroplets, they all require the analysis of thousands of droplets in tandem where values are extrapolated back to the average droplet. The robust correlation of chemistry in an individual droplet of a specific size requires the development of new measurement tools capable of accessing single sub-femtoliter droplets, one at a time. Here, I describe the development of new electrochemical measurement tools which have been used to access this curious chemistry at the single droplet level as well as the implications of the findings from the implementation of these tools. First, stochastic electrochemistry, a method where an electrode effectively “fishes” for droplets suspended in an oil phase, will be outlined and it’s use to probe the spontaneous generation of hydrogen peroxide in such droplets will be presented. Afterwards, a method used for the electroanalysis of droplets in air, or aerosols, where an ionic liquid bubble (suspended by a platinum bubble wand) captures droplets to be analyzed at a carbon fiber wire thread through the middle, will be outlined. The use of these two techniques to correlate enzymatic activity in both droplet types, droplets in oil and aerosols, will then reveal that the gas|liquid interface promotes higher turnover rate acceleration for glucose oxidase. Finally, the fabrication and use of a dual-barrel electrode for the analysis of an acoustically levitated droplet will be presented. These three techniques stand to make electrochemistry a pivotal technique for the analysis of the curious chemistry housed within individual microdroplets. In addition to these methods, methods for extending electrochemistry to the next generation of scientists are presented.</p>
20

Eletrodos modificados pela codeposição eletroquímica de metais e óxidos de molibdênio: estrutura, composição e propriedades / Electrodes modified by the electrochemical codeposition of metals and molybdenum oxides: Structure, composition and properties

Kosminsky, Luís 23 October 2003 (has links)
Filmes de óxidos de molibdênio, com ou sem a inclusão de metais, foram eletroquimicamente depositados sobre eletrodos de carbono vítreo em solução de Mo(VI) com pH ajustado em 2,5 ou 3,0. Estes filmes foram caracterizados por Soft X-ray Spectroscopy (SXS), X-ray Diffraction (XRD) e Rutherford Backscattering Spectroscopy (RBS). A coordenação local dos sítios de Mo foram analizadas. As configurações estruturais locais do Mo foram avaliadas quando diferentes números de ciclos de potencial foram empregados na modificação dá superfície do eletrodo. Alguns metais (Pt, Pd, Rh e Cu) foram codepositados com as espécies de Mo e seu efeito nos materiais obtidos foi investigado. O grau de ocupação do orbital 4d do Mo foi examinado como um indicador da existência de interações entre o Mo e o metal codepositado. A incorporação de Pt no filme de óxidos na superfície de um eletrodo de ouro foi caracterizada por espectroscopia PIXE. O eletrodo modificado por óxidos de molibdênio foi estudado em faixas de potencial positivas frente à oxidação de nitrito (NO2-) e de óxido nítrico (NO). A relação entre a porosidade do filme e a presença de água em seus interstícios foi examinada e a capacidade de retenção de NO e NO2 foi também investigada. O eletrodo modificado foi usado como um sensor amperométrico em um sistema de injeção em fluxo (FIA) e o método foi empregado na determinação de nitrito em amostras de lingüiça. A oxidação de H2O2 foi investigada em superfície recoberta por filme de óxidos de Mo com Pt codepositada. O efeito do pH, do potencial e do tempo de pré-redução do filme de Pt e MoOx foi discutida. O comportamento eletroquímico dos filmes codepositados de Rh, Pd, Pt ou Cu e MoOx foi caracterizados comparativamente pela redução do iodato e pela oxidação do nitrito e do etanol nestes substratos. H4MogO26 foi empregado para preparar filmes contendo molibdênio e sua resposta eletroquímica foi comparada com as obtidas com o filme depositado por procedimento usual. O filme de óxidos de molibdênio foi usado com sucesso na imobilização de um complexos de Ru(III) na superfície de carbono vítreo. / Molybdenum oxide films with and without metal inclusion were electrochemically deposited on glassy carbon electrodes from Mo(VI) solutions at pH 2.5 or pH 3.0. These films were characterized by Soft X-ray Spectroscopy (SXS), X-ray Diffraction (XRD) and Rutherford Backscattering Spectroscopy (RBS). The local coordination of Mo sites was analyzed. The Mo local structure configurations were evaluated when different number of potential cycles were employed in the modification of the electrode surface. Some metaIs (Pt, Pd, Rh and Cu) were codeposited with the Mo species and their effect on the obtained material was investigated. The occupancy leveI of the 4d orbital of Mo was examined as an indicator of interactions between Mo and codeposited metals. The incorporation of Pt in the oxide film at a gold electrode surface was characterized by PlXE spectroscopy. The electrode modified by molybdenum oxides was studied at positive potential ranges for the oxidation of nitrite (NO2-) and nitric oxide (NO). The relationship between the porosity of the film and its water content was exarnined and the entrapment of NO and NO2 was also investigated. The modified electrode was used as an amperometric sensor in a flow injection configuration and the method was employed in the deterrnination of nitrite in sausage samples. The oxidation of H2O2 was investigated at surfaces covered by the Mo filrn with codeposited Pt. The effect of pH and potential and time of pre-reduction on the response of the film with Pt was discussed. The electrochemical behaviour of codeposited films of Rh, Pd, Pt or Cu and Mo MoOx was characterized comparatively for the reduction of iodate and the oxidation of nitrite and ethanol. 4MogO26 was also employed to prepare films containing molybdenum and their electrochemical responses were compared with those obtained by using the film electrodeposited by the usual procedure. The molybdenum oxide film was successfully used for the immobilization of Ru(III) complex at glassy carbon surfaces.

Page generated in 0.0858 seconds