• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 147
  • 96
  • 11
  • 7
  • 6
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 307
  • 94
  • 65
  • 36
  • 31
  • 30
  • 30
  • 30
  • 30
  • 28
  • 26
  • 24
  • 23
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Non-invasive electrical imaging of the heart

Cheng, Leo K January 2001 (has links)
Non-invasive electrical imaging of the heart aims to quantitatively reconstruct information about the electrical activity of the heart from multiple thoracic ECG signals. The computational framework required to produce such electrical images of the heart from non-invasive torso surface signals is presented. It is shown reliable electrical images of the heart can be obtained under a controlled environment. This has been demonstrated using an anatomically realistic boundary element porcine torso model. The procedures required to create a subject specific model using a small number of control points and to create a specific heart model from three-dimensional ultrasound images using a linear fitting procedure are presented. From discrete ECG electrodes a continuous representation of the potential field over the entire torso surface can also be produced using this linear fitting procedure. The construction of the transfer matrices for the two predominant electrocardiographic sources (epicardial potentials and myocardial activation times) are described in detail. The transfer matrices are used to compute activation times within the heart and epicardial potentials on the heart surface. Myocardial activation times are computed using an algorithm based on the Critical Point Theorem while epicardial potentials are computed using standard Tikhonov and Truncated SVD spatially regularised methods as well as Greensite's spatial and temporal regularisation method. The regularisation parameters for the epicardial potentials are determined using a variety of methods (e.g., CRESO criterion, L-curve, zero-crossing). The potential and activation based formulations are compared in a comprehensive inverse simulation study. To try and capture the dynamic and variable nature of cardiac electrical activity, the study is performed with three different types of cardiac sources with a realistic porcine model. These simulations investigate the effect on the computed solutions of individual and combinations of modelling errors. These errors include corruption in the torso surface signals, changes in material properties and geometric distortion. In general, the activation based formulation is preferred over the epicardial potential formulations, with Greensite's method found to be the best method for reconstructing epicardial potentials. Under optimal conditions, the activation approach could reconstruct the activation times to within RMS. Both potential and activation based formulations were found to be relatively insensitive to changes in material properties such as lung conductivities and activation function shapes. When examining individual errors, the geometry and positions of the torso and heart had the greatest effects on the inverse solutions. The relative heart position needed to be determined to within to obtain results within of the solutions obtained under control conditions. When the modelling errors are combined to produce errors which can be expected in a clinical or experimental situation the activation based solutions were consistently more accurate than potential based solutions. The next necessary step in this project is the detailed validation of the results against in-vivo data. This step is necessary before such algorithms can be reliably used to aid in the assessment of heart function in a clinical environment.
102

Non-invasive electrical imaging of the heart

Cheng, Leo K January 2001 (has links)
Non-invasive electrical imaging of the heart aims to quantitatively reconstruct information about the electrical activity of the heart from multiple thoracic ECG signals. The computational framework required to produce such electrical images of the heart from non-invasive torso surface signals is presented. It is shown reliable electrical images of the heart can be obtained under a controlled environment. This has been demonstrated using an anatomically realistic boundary element porcine torso model. The procedures required to create a subject specific model using a small number of control points and to create a specific heart model from three-dimensional ultrasound images using a linear fitting procedure are presented. From discrete ECG electrodes a continuous representation of the potential field over the entire torso surface can also be produced using this linear fitting procedure. The construction of the transfer matrices for the two predominant electrocardiographic sources (epicardial potentials and myocardial activation times) are described in detail. The transfer matrices are used to compute activation times within the heart and epicardial potentials on the heart surface. Myocardial activation times are computed using an algorithm based on the Critical Point Theorem while epicardial potentials are computed using standard Tikhonov and Truncated SVD spatially regularised methods as well as Greensite's spatial and temporal regularisation method. The regularisation parameters for the epicardial potentials are determined using a variety of methods (e.g., CRESO criterion, L-curve, zero-crossing). The potential and activation based formulations are compared in a comprehensive inverse simulation study. To try and capture the dynamic and variable nature of cardiac electrical activity, the study is performed with three different types of cardiac sources with a realistic porcine model. These simulations investigate the effect on the computed solutions of individual and combinations of modelling errors. These errors include corruption in the torso surface signals, changes in material properties and geometric distortion. In general, the activation based formulation is preferred over the epicardial potential formulations, with Greensite's method found to be the best method for reconstructing epicardial potentials. Under optimal conditions, the activation approach could reconstruct the activation times to within RMS. Both potential and activation based formulations were found to be relatively insensitive to changes in material properties such as lung conductivities and activation function shapes. When examining individual errors, the geometry and positions of the torso and heart had the greatest effects on the inverse solutions. The relative heart position needed to be determined to within to obtain results within of the solutions obtained under control conditions. When the modelling errors are combined to produce errors which can be expected in a clinical or experimental situation the activation based solutions were consistently more accurate than potential based solutions. The next necessary step in this project is the detailed validation of the results against in-vivo data. This step is necessary before such algorithms can be reliably used to aid in the assessment of heart function in a clinical environment.
103

Evaluation of a laser doppler system for myocardial perfusion monitoring /

Fors, Carina, January 2007 (has links)
Licentiatavhandling (sammanfattning) Linköping : Linköpings universitet, 2007. / Härtill 3 uppsatser.
104

Foetal acid-base status and foetal electrocardiography

Symonds, E. M. January 1970 (has links) (PDF)
Thesis (M.D.)--Dept. of Obstetrics and Gynaecology, University of Adelaide, 1970. / Includes bibliographical references (leaves 284-298).
105

The effects of atrial repolarization on exercise-induced ST-segment depression in apparently healthy females /

Brown, Rhonda K., January 1994 (has links)
Thesis (M.S. Ed.)--Virginia Polytechnic Institute and State University, 1994. / Vita. Abstract. Includes bibliographical references (leaves 69-71). Also available via the Internet.
106

Data reduction algorithm for on-line ECG applications /

Dordari, Azita. January 1900 (has links)
Thesis (M.C.S.) - Carleton University, 2006. / Includes bibliographical references (p. 119-122). Also available in electronic format on the Internet.
107

A distributed reconstruction of EKG signals

Cordova, Gabriel, January 2008 (has links)
Thesis (M.S.)--University of Texas at El Paso, 2008. / Title from title screen. Vita. CD-ROM. Includes bibliographical references. Also available online.
108

Design of an ECG sensor node for body area networks /

Saeed, Adnan. January 2008 (has links)
Thesis (M.S.)--University of Texas at Dallas, 2008. / Includes vita. Includes bibliographical references (leaves 51-54)
109

Fetal electrocardiogram extraction and enhancement using triggered adaptive filtering /

Badee, Vesal, January 1900 (has links)
Thesis (M.App.Sc.) - Carleton University, 2007. / Includes bibliographical references (p. 126-129). Also available in electronic format on the Internet.
110

Computerized method for finding the ideal patient-specific location to place an equivalent electric dipole to derive an estimation of the electrical activity of the heart

Sevilla, David. January 2007 (has links)
Thesis (M.S.)--University of Texas at El Paso, 2007. / Title from title screen. Vita. CD-ROM. Includes bibliographical references. Also available online.

Page generated in 0.3031 seconds