• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthèse et caractérisation de nanocomposites platine/nanofibres pour électrodes de pile à combustible à électrolyte polymère / SYNTHESIS AND CHARACTERISATION OF NANOFIBRE SUPPORTS FOR PLATINUM AS ELECTRODES FOR POLYMER ELECTROLYTE FUEL CELLS

Savych Maciejasz, Juliia 16 July 2014 (has links)
Cette thèse s'inscrit dans le contexte général des efforts de recherche pour développer des supports de catalyseur résistant à la corrosion qui peuvent potentiellement remplacer le carbone dans les piles à combustible à électrolyte polymère. Des nanofibres et des nanotubes à base de TiO2 et SnO2 dopés par Nb ont été préparés par filage électrostatique et caractérisés par diffraction des rayons X, spectroscopie des photoélectrons de rayons X, spectroscopie Raman, mesures de surface spécifique et de conductivité électronique. Les nanofibres de TiO2 et SnO2 dopées par Nb présentent une conductivité et une surface spécifique supérieure à celle des oxydes non dopés. Des nanoparticules de platine ont été préparées en utilisant une méthode polyol modifié par micro-ondes, et déposées sur les supports fibreux. La caractérisation électrochimique des électrocatalyseurs ainsi obtenus a été réalisée ex situ par voltamètre en utilisant une électrode à disque tournant. Le catalyseur supporté, Pt sur SnO2 dopé par Nb présenté une stabilité électrochimique supérieure à celle d'un catalyseur Pt sur carbone commercial (Vulcan XC-72R). Une cathode Pt/Nb-SnO2 préparée par pulvérisation a pu être intégrée dans un assemblage membrane-électrode (AME) et caractérisée in situ dans une cellule de pile à combustible à électrolyte polymère. L'AME a présenté une durée de vie plus élevée mais une densité de puissance plus faible qu'un AME contenant Pt/C. Les nanotubes de SnO2 dopés par Sb ont une conductivité plus élevée que celle des matériaux dopés par Nb et lorsqu'ils sont intégrés dans une cathode, fournissent une densité de puissance accrue par rapport à une cathode à base de Nb- SnO2. / The objective of this thesis is to develop corrosion resistant catalyst support materials that can potentially replace carbon in Polymer electrolyte fuel cells. Therefore, Nb doped TiO2 and SnO2 nanofibres and nanotubes were prepared by electrospinning and characterised by X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, N2 adsorption/desorption analysis and electronic conductivity measurements. The obtained Nb doped TiO2 and SnO2 one dimensional structures demonstrated higher conductivity and surface area than non-doped oxides. Pt nanoparticles were prepared using a modified microwave-assisted polyol method and deposited on the electrospun supports. Electrochemical characterisation of the obtained electrocatalysts was performed ex situ using a rotating disc electrode, and compared with a commercial carbon support (Vulcan XC-72R). Pt supported on Nb doped SnO2 provided higher electrochemical stability in comparison to Pt on carbon. Thus, a cathode of Pt/Nb-SnO2 prepared by spray-coating was integrated into Membrane Electrode Assembly (MEA) and characterised in situ in single Polymer electrolyte fuel cell. The MEA exhibited higher durability though lower power density compared to MEA with Pt/C based cathode. Sb doped SnO2 nanotubes have higher conductivity than Nb doped material and when integrated into a cathode, provided enhanced power density in comparison to Nb-SnO2 based cathode.
2

Supports de Catalyseur Nanostructurés pour Pile à Combustible à Membrane Échangeuse de Protons / Novel Structured Catalyst Supports for PEM Fuel Cells

Nabil, Yannick 18 December 2015 (has links)
La durabilité des piles à combustible à membrane échangeuse de proton (PEMFC) est un des verrous technologiques majeurs qui freinent leurs implantations sur le marché. Ces travaux de thèse s’inscrivent dans ce contexte en proposant l’élaboration de matériaux en carbure de niobium comme support de catalyseur pour remplacer les supports carbonés actuellement utilisés dans les cathodes de PEMFC. Notre démarche est d’associer cette composition à différentes morphologies contrôlées pour développer des matériaux conducteurs, présentant une porosité adaptée et chimiquement plus stable que le carbone qui se corrode dans les conditions de fonctionnement des PEMFC. Ainsi trois voies de synthèse basées sur des techniques variées (filage électrostatique, synthèse hydrothermal avec agent structurant) ont été étudiées aboutissant à trois types de morphologie : des poudres nanostructurées, des tissus nanofibreux et des nanotubes aux parois poreuses. Après leurs caractérisations structurales et morphologiques approfondies, ces supports ont été catalysés avec des nanoparticules de platine synthétisées par une méthode polyol assisté par micro-onde. La finalité de ce projet est d’évaluer les performances électrochimiques relatives à la réaction de réduction de l’oxygène de ces supports catalysés pour mettre en avant leurs exceptionnelles stabilités comparées à un support catalysé de référence (Pt/C) sans perte significative d’activité catalytique. / One pivotal issue to be overcome for the widespread adoption of Proton exchange membrane fuel cells (PEMFC) is the stability overtime. In this context, This PhD project focuses on the elaboration of niobium carbide based electrocatalyst supports for the PEMFC cathode to replace the conventional carbon based supports that notoriously suffer from corrosion in fuel cell operating conditions. The approach is to associate this alternative chemical composition with controlled morphologies in order to design electronically conductive and chemically stable materials with the appropriate porosity. Three different syntheses involving hydrothermal template synthesis or electrospinning have been developed leading to three different morphologies: nanostructured powders with high surface area, self-standing nanofibrous mats, and nanotubes with porous walls. These various supports have been catalysed by deposition of platinum nanoparticles synthesised by a microwave-assisted polyol method, and they have been characterised for their chemical and structural composition, morphology, and electrochemical properties. This work demonstrates that the Pt loaded NbC supports feature a greater electrochemical stability than a commercial Pt/C reference and similar electrocatalytic activities towards the oxygen reduction reaction.

Page generated in 0.0778 seconds