• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 928
  • 418
  • 137
  • 92
  • 79
  • 29
  • 28
  • 21
  • 17
  • 16
  • 7
  • 6
  • 6
  • 6
  • 6
  • Tagged with
  • 2116
  • 329
  • 327
  • 271
  • 229
  • 215
  • 206
  • 195
  • 190
  • 162
  • 157
  • 153
  • 148
  • 141
  • 141
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Applications of scanning electrochemical microscopy in biological systems

Koley, Dipankar 03 January 2013 (has links)
The main theme in this dissertation is to develop Scanning Electrochemical Microscopy (SECM) based electroanalytical techniques to study quantitative biology in real time. The multidrug resistance (MDR) phenomenon in live cancer cells was studied using mimic drug molecules such as menadione with the aid of SECM. Real time quantitative detection of thiodione (menadione-conjugate) pumped out of the cells was determined to be 140 μM due to exposure of 500 μM menadione to the cells. Selective blocking of these MDR pumps in live intact cells was also achieved by small molecules such as MK571 as well as by the MDR specific antibody. An approximately 50% drop in thiodione flux was observed in both cases of MDR pumps inhibition. This SECM technique was also extended to measure the permeability of a highly charged hydrophilic molecule passing through the membrane of a single living cell. The permeability was measured to be 6.5 ± 2.0 × 10-6 m/s. Real time monitoring of morphological changes in a live HeLa cell due to addition of varying concentration of surfactant such as Triton X-100 was also demonstrated by SECM. This electroanalytical technique was also expanded to study quantitative microbiology. Real time quantitative detection of pyocyanin produced by Pseudomonas aeruginosa (PA14 strain) biofilm locally was determined to be 2.5 μM after 6 h. Pyocyanin (PYO) was also observed to be reduced by PA14 biofilm, thus maintaining a reduced atmosphere above the biofilm even in presence of oxygen. Spatial mapping of this reduced PYO showed that this reduced zone was only formed up to 500 μm above the biofilm. The cells are also able to modulate the height of the reduced PYO zone in accordance to the availability of Fe(III/II) in the solution to scavenge iron from the surrounding environment. Real time spatial mapping hydrogen peroxide across polymicrobial biofilm (Sg and Aa) was also achieved with the aid of SECM. The local peroxide concentration produced by Sg was measured to be 1 mM, which is significantly higher than the bulk peroxide concentration. This study also showed that the local concentration across the microbial film is more important than the bulk concentration since bacteria communicate locally in real world. / text
242

Scanning electrochemical microscopy studies applied to biological systems

Mauzeroll, Janine 28 August 2008 (has links)
Not available / text
243

Development of combined scanning electrochemical optical microscopy with shear force feedback using a tuning fork and current feedback

Lee, Young Mi 24 March 2011 (has links)
Not available / text
244

Trace metals analysis by electroanalytical methods

黃洸漢, Wong, Kwong-hon. January 1979 (has links)
published_or_final_version / Chemistry / Master / Master of Philosophy
245

Reductive Dehalogenation of Gas-phase Trichloroethylene using Heterogeneous Catalytic and Electrochemical Methods

Ju, Xiumin January 2005 (has links)
REDUCTIVE DEHALOGENATION OF GAS-PHASE TRICHLOROETHYLENE USING HETEROGENEOUS CATALYTIC AND ELECTROCHEMICAL METHODSXiumin Ju, Ph.D.The University of Arizona, 2005Director: Dr. Robert G. ArnoldThe first part of this work investigates catalytic hydrodechlorination (HDC) of gas-phase trichloroethylene (TCE) using 0.5 wt.% Pt/g-Al2O3 and 0.0025 wt.% Pt/SiO2 in packed-bed reactors. TCE was efficiently transformed on the platinum surface using H2 as reducing agent. The main products of the reaction were ethane and chloroethane. In the case of Pt/Al2O3, more than 94% TCE conversion efficiency was maintained for over 700 hours of operation at 100ºC at a residence time of 0.37 seconds. At 22ºC, severe catalyst deactivation was observed. Catalyst deactivation was attributed to coking and chlorine poisoning. A series of treatments including (i) hydrogen gas addition at high temperature (oxygen free) to remove chlorine and (ii) oxygen addition at 500ºC to remove coke were attempted to regenerate the deactivated catalyst. Only hydrogen treatment partially restored catalyst activity. When using Pt/SiO2, catalyst deactivation was severe even at 100ºC, probably due to low surface area of Pt and the silica support. Adding KOH to the packed Pt/SiO2 catalyst during (otherwise) normal operation slowed catalyst deactivation. Adding O2 to the influent improved catalyst activity and slowed deactivation.The second part of this research involves the destruction of gas-phase TCE using an electrochemical reactor similar in design of a polymer electrolyte membrane (PEM) fuel cell. With a proton-conducting membrane in the middle, the anode and cathode comprised of carbon cloth and carbon-black-supported Pt were hotpressed together to form a membrane electrode assembly (MEA). TCE contaminated gas streams were fed to the cathode side of the fuel cell, where TCE was reduced to ethane and hydrochloric acid. The results suggest that TCE reduction occurs via a catalytic reaction with atomic hydrogen that is reformed on the cathode's surface rather than an electrochemical reduction via direct electron transfer. Substantial conversion of TCE was obtained, even in the presence of molecular oxygen in the cathode chamber. The process was modeled successfully by conceptualizing the cathode chamber as a plug flow reactor with a continuous source of H2(g) emanating from the boundary.
246

Chemical Systems for Electrochemical Mechanical Planarization of Copper and Tantalum Films

Muthukumaran, Ashok Kumar January 2008 (has links)
Electro-Chemical Mechanical Planarization (ECMP) is a new and highly promising technology just reaching industrial application; investigation of chemistries, consumables, and tool/control approaches are needed to overcome technological limitations. Development of chemical formulations for ECMP presents several challenges. Unlike conventional CMP, formulations for ECMP may not need an oxidant. Organic additives, especially inhibitors used to control planarity (i.e. to protect recessed regions), need to be stable under applied anodic potential. To have a high current efficiency, the applied current should not induce decomposition of the formulations. In addition, to enable clearing of the copper film, the interactions between multiple exposed materials (barrier material as well as copper) must be considered. Development of a full sequence ECMP process would require the removal of the barrier layer as well. Chemical systems that exhibit a 1:1 selectivity between the barrier layer and copper would be ideal for the barrier removal step of ECMP. The main goal of this research is to investigate the chemistries suitable for ECMP of copper and tantalum films. Copper was electroplated onto the gold electrode of quartz crystals, and its dissolution/passivation behavior in hydroxylamine solutions was studied at different applied potential values. The dissolution rate of copper is pH dependent and exhibits a maximum in the vicinity of pH 6. Copper dissolution increases with respect to overpotential (η) and dissolution rates as high as 6000 Å/min have been obtained at overpotential of 750mV. While both benzotriazole (BTA) and salicylhydroxamic acid (SHA) serve as good inhibitors at lower overpotentials, their effectiveness decreases at higher overpotentials. A fundamental study was undertaken to evaluate the usefulness of a sulfonic acid based chemical system for the removal of tantalum under ECMP conditions. Tantalum as well as copper samples were polished at low pressures (~0.5 psi) under galvanostatic conditions in dihydroxy benzene sulfonic acid (DBSA) solutions maintained at different pH values. At a current density of 0.5 mA/cm² and a pH of 10, tantalum removal rate of 200 Å/min with a 1:1 selectivity to copper was obtained in 0.3M DBSA solutions containing 1.2M H₂O₂. The presence of a small amount (~ 0.1%) of colloidal silica particles was required to obtain good removal rates. A comparison of DBSA and methane sulfonic acid (MSA) based chemical system was studied for the removal of tantalum. The performance of DBSA is better than that of MSA. Additionally, DBSA solution has been used for tantalum nitride removal under ECMP conditions. However, DBSA is not as effective for tantalum nitride as it is for tantalum. Polishing of the patterned test structure in optimized solution containing 0.01M BTA results in complete removal of barrier layer and surface planarity is achieved.
247

Ionic liquid electrochemical processing of reactive metals

Vaughan, James 05 1900 (has links)
Ionic liquids (ILs) were studied as solvents for electrochemical reactions with the intent to devise metallurgical processes for Al, Mg and Ti that are less energy intensive and operate at lower temperatures than current industrial practice. Tetra-alkyl phosphonium ILs are on the low end of the IL cost spectrum and are regarded as understudied compared with imidazolium and pyridinium ILs. They are also known to be more thermally stable. The density, viscosity and conductivity of the phosphonium ILs and metal salt-IL mixtures were measured. The conductivity of the phosphonium ILs tested were found to be roughly an order of magnitude lower than imidazolium ILs; this is attributed to the relatively large cation size and localized charge. Linear density-temperature functions are presented. The viscosity and conductivity temperature relationship was modeled using the Vogel-Tamman-Fulcher (VTF) equation. The electrochemical window of A10341'14,6,6,610 was studied on a Pt substrate over a wide range of A1C13 concentrations using cyclic voltammetry (CV). It was found that the tetra-alkyl phosphonium cation is on the order of 800 mV more electrochemically stable than the 1-ethyl-3-methyl imidazolium (EMI+). Cathodic and anodic polarization of Al in A1C13-[P14,6,6,6]C1 (Xmc13 = 0.67) was studied at temperatures ranging from 347 to 423 K. The Butler-Volmer equation was fitted to the plots by varying the kinetic parameters. The cathodic reaction was found to be diffusion limited and the anodic reaction is limited by passivation at lower temperatures. The overpotential required for electrodissolution of Al was found to be higher than for electrodeposition. Aluminium was electrodeposited using both an electrowinning setup (chlorine evolution anode reaction) and electrorefining setup (Al dissolution anode reaction). The deposits were characterized in terms of morphology, current efficiency and power consumption. A variety of deposit morphologies were observed ranging from smooth, to spherical to dendritic, and in some cases, the IL was occluded in the deposit. The current efficiency and power consumption were negatively impacted by the presence of H2O and HCl present in the as-received ILs and by C12(g) generated by the anode reaction in the case of the electrowinning setup. HC1 was removed by cyclic polarization or corrosion of pure Al, resulting in current efficiencies above 90%. Aluminium was electrodeposited using the electrorefining setup with anode-cathode spacing of 2 mm at power consumption as low as 0.6 kWhr/kg-Al. This is very low compared with industrial Al electrorefining and Al electroplating using the National Bureau of Standards bath, which require 15-18 kWhr/kg-Al and 18 kWhr/kg-Al, respectively. However, due to low solution conductivity the power consumption increases significantly with increased anode-cathode spacing. Titanium tetrachloride was found to be soluble in [P14,6,6,6]Cl and increases the conductivity of the solution. Attempts to reduce the Ti(IV) included corrosion of titanium metal, corrosion of magnesium metal powder and cathodic polarization. Despite a few attempts, the electro-deposition of Ti was not observed. At this point, titanium electrodeposition from phosphonium based ILs does not appear feasible.
248

Tungsten Doped Tantalum Oxide Anodes for Electrochemical Disinfection of Wastewater

Holladay, Siobhan 29 November 2012 (has links)
Tungsten doped tantalum oxide films on titanium substrates were investigated for use as anodes in the electrochemical disinfection of wastewater (measured through e. coli inactivation). A sol-gel method for fabricating these films was developed that allowed for control of both the doping concentration (through volumes of tantalum and tungsten ethoxide added to the solutions), and the thickness (through the number of layers applied). The morphology and composition of these films were investigated using SEM and EDX mapping; the morphology was found to be connected to the fabrication heating procedure. Three different doping concentrations (0%, 8% and 14% tungsten by volume of added metals) were investigated for: 1) electrochemical activity; 2) long-term stability; and 3) disinfection capabilities. The 14% samples demonstrated the highest conductivity (0.06μS/cm), good long-term stability (verified using ICPMS, SEM and EDX analysis) and the best electrochemical activity for removal of e. coli (based on wastewater tests).
249

Tungsten Doped Tantalum Oxide Anodes for Electrochemical Disinfection of Wastewater

Holladay, Siobhan 29 November 2012 (has links)
Tungsten doped tantalum oxide films on titanium substrates were investigated for use as anodes in the electrochemical disinfection of wastewater (measured through e. coli inactivation). A sol-gel method for fabricating these films was developed that allowed for control of both the doping concentration (through volumes of tantalum and tungsten ethoxide added to the solutions), and the thickness (through the number of layers applied). The morphology and composition of these films were investigated using SEM and EDX mapping; the morphology was found to be connected to the fabrication heating procedure. Three different doping concentrations (0%, 8% and 14% tungsten by volume of added metals) were investigated for: 1) electrochemical activity; 2) long-term stability; and 3) disinfection capabilities. The 14% samples demonstrated the highest conductivity (0.06μS/cm), good long-term stability (verified using ICPMS, SEM and EDX analysis) and the best electrochemical activity for removal of e. coli (based on wastewater tests).
250

A label free DNA hybridization sensor

Thompson, Liz 08 1900 (has links)
No description available.

Page generated in 0.0781 seconds