Spelling suggestions: "subject:"electrochemical impedance dpectroscopy"" "subject:"electrochemical impedance espectroscopy""
51 |
Study of green film-forming corrosion inhibitor based on mussel adhesive proteinHolmér, Camilla January 2013 (has links)
Today there are numerous methods to slow down a corrosion process of metallic materials. However, due to environmental effects and health risk issues, several traditional corrosion inhibitors have to be phased out. Hence, it is of great importance to develop new corrosion inhibitors that are “green”, safe, smart and multifunctional. In this essay, the focus is on mussel adhesive protein (MAP) and its possibility to reduce the rate of the corrosion process. The protein exhibit great adhesive strength and protective properties, allowing it to adhere to a multitude of different surfaces and is therefore of great interest of corrosion science. The protein Mefp-1, derived from the blue mussel´s foot, had been pre-adsorbed on the carbon steel surface and provided good corrosion inhibition in a basic chloride solution for a short exposure time. The protection was further improved with the assist of iron and ceria ions by formation of protein/ions complexes within the surface films and thus enhanced the corrosion protection for longer exposure time. Ceria nanoparticles were used in order to create a multi-layer composite film with an even higher corrosion protection. The results suggest a denser film compared to previous samples and a more uniform surface.
|
52 |
Modelling and Experimental Investigation of the Dynamics in Polymer Electrolyte Fuel CellsWiezell, Katarina January 2009 (has links)
In polymer electrolyte fuel cells (PEFC) chemical energy, in for example hydrogen, is converted by an electrochemical process into electrical energy. The PEFC has a working temperature generally below 100 °C. Under these conditions water management and transport of oxygen to the cathode are the parameters limiting the performance of the PEFC. The purpose of this thesis was to better understand the complex processes in different parts of the PEFC. The rate-limiting processes in the cathode were studied using pure oxygen while varying oxygen pressure and humidity. Mass-transport limitations in the gas diffusion layer using oxygen diluted in nitrogen or helium was also studied. A large capacitive loop was seen at 1-10 Hz with 5-20 % oxygen. When nitrogen was changed to helium, which has a higher binary diffusion coefficient, the loop decreased and shifted to a higher frequency. Steady-state and electrochemical impedance spectroscopy (EIS) models have been developed that accounts for water transport in the membrane and the influence of water on the anode. Due to water drag, the membrane resistance changes with current density. This gives rise to a low frequency loop in the complex plane plot. The loop appeared at a frequency of around 0.1 Hz and varied with D/Lm2, where D is the water diffusion coefficient and Lm is the membrane thickness. The EIS model for the hydrogen electrode gave three to four semicircles in the complex plane plot when taking the influence of water concentration on the anode conductivity and kinetics into account. The high-frequency semicircle is attributed to the Volmer reaction, the medium-frequency semicircle to the pseudocapacitance resulting from the adsorbed hydrogen, and the low-frequency semicircles to variations in electrode performance with water concentration. These low-frequency semicircles appear in a frequency range overlapping with the low-frequency semicircles from the water transport in the membrane. The effects of current density and membrane thickness were studied experimentally. An expected shift in frequency, when varying the membrane thickness was seen. This shift confirms the theory that the low-frequency loop is connected to the water transport in the membrane. / <p>QC 20121011</p>
|
53 |
Cathode polarization effects in rare Earth nickelate cathodes for solid oxide fuel cellsBanner, Jane Elise 28 September 2020 (has links)
The US navy has a critical need for air independent advanced electric power sources to replace batteries in unmanned undersea vehicles (UUVs). Solid oxide fuel cells (SOFCs) are being considered as one potential replacement option. However, SOFCs typically operate using atmospheric air as their oxidant which is not an option for this underwater application. For this application, pure pressurized oxygen would be used as the oxidant which motivates the search for a cathode material which would be optimal for a high oxygen partial pressure environments.
Specifically, this research focuses on cathode materials which can exploit the unique operating conditions required for UUVs. The operation in 100% oxygen atmosphere rather than air provides a significant opportunity. This is because oxygen surface exchange and bulk transport through the cathode is mediated through point defects whose concentrations are sensitive to the partial pressure of oxygen in the atmosphere surrounding the cathode. Oxygen bulk transport along with oxygen surface exchange are the rate controlling steps in oxygen reduction and incorporation at the cathode. The focus of this research is to examine the relationship between oxygen partial pressure and its effect on SOFC cathode performance for two different families of cathode materials, namely strontium doped lanthanum manganite, and a relatively new class of cathode materials, rare-earth nickelates. The experimentally measured relationship between cathode polarization and oxygen partial pressure will be correlated with the underlying transport and surface exchange processes in both families of materials.
|
54 |
Advancing Li/CFX Battery Chemistry: A Study On Partially Reduced CFx As A Primary Li/CFx Cell Cathode MaterialMathews, Martin 09 December 2011 (has links)
Conventional primary Li/CFx batteries employ graphite and polyvinylidene fluoride additives in the cathodes. These additives usher in some un-desired side-effects, such as lower battery capacities (mAh/g) and smaller current densities (mA/g). An innovative pretreatment was developed in this research in which CFx was subject to a “solvated electron” reduction to obtain a thin layer graphitic carbon coating on the CFx particle surfaces. Resistivity tests revealed that these partially reduced CFx particles have a higher conductivity at comparable graphitic carbon contents. Electrochemical discharge reactions demonstrated that batteries made from the reduced CFx were superior to the conventional batteries with higher current densities and higher capacities achieved. Impedance spectroscopy (EIS) studies found out that the reduced CFx particles have smaller cell reaction resistances, smaller double layer/intercalation capacitances and smaller mass transport resistances. It appears that use of reduced CFx has the potential to replace the conventional CFx plus additives as a cathode material in Li/CFx batteries.
|
55 |
ADVANCED CHARACTERIZATION OF BATTERY CELL DYNAMICSMessing, Marvin January 2021 (has links)
Battery Electric Vehicles (BEV) are gaining market share but still must overcome several engineering challenges related to the lithium-ion battery packs powering them. The batteries must be carefully managed to optimize safety and performance. The estimation of battery states, which cannot be measured directly, is an important part of battery management and remains an active area of research since small gains in estimation accuracy can help reduce cost and increase BEV range.
This thesis presents several improvements to battery state estimation using different methods. Electrochemical Impedance Spectroscopy (EIS) is receiving increased attention from researchers as a method for state estimation and diagnostics for real-time applications. Due to battery relaxation behaviour, long rest times are commonly used before performing the EIS measurement. In this work, methods were developed to significantly shorten the required rest times, and a State of Health (SoH) estimation strategy was proposed by taking advantage of the relaxation effect as measured by EIS. This method was demonstrated to have an estimation error of below 1%.
At low temperatures, the accuracy of the battery model becomes poor due to the non-linear battery response to current. By using an adaptive filter called the Interacting Multiple Model (IMM) filter, the next part of this work showed how to significantly improve low temperature State of Charge (SoC) estimation. Further reduction in estimation errors was achieved by pairing the IMM with the Smooth Variable Structure Filter (SVSF), for SoC estimation errors below 2%.
The work presented in this thesis also includes the application of Deep Neural Networks (DNN) for SoC estimation from EIS data. Finally, an extensive aging study was conducted and an
accelerated protocol was compared to a realistic drive cycle based protocol using EIS as a characterization tool. / Thesis / Doctor of Philosophy (PhD) / Replacing conventional gasoline/diesel powered cars with battery powered vehicles is part of a solution to the climate crisis. However, the initial costs paired with range anxiety stops many from switching to electric cars. Both cost and range are related to the battery pack. To achieve the best possible range for the lowest possible cost, battery packs must be carefully controlled by sophisticated algorithms. Unfortunately, battery range or health cannot be measured directly, but must be inferred through measurable indicators. This thesis explores battery behavior under different operating conditions and develops improved methods which can be used to determine battery health and/or range. A powerful method usually used only in laboratory settings is studied and improved to make it more suitable for implementation in electric cars. In this work it is used for accurate battery health determination. Furthermore, a strategy for improving battery range determination at low temperatures is also proposed.
|
56 |
From Invasive Neurosensing to Noninvasive Radiometric Core and Brain MonitoringTisdale, Katrina 27 September 2022 (has links)
No description available.
|
57 |
Non-destructive Microstructural Evaluation Of Yttria Stabilized Zirconia, Nickel Aluminides And Thermal Barrier Coatings Using Electrochemical Impedance SpectroscopyVishweswaraiah, Srinivas 01 January 2004 (has links)
There has been an urge for increasing the efficiency in advanced gas turbine engines. To fulfill these needs the inlet gas temperatures should be increased in the gas turbine engines, thermal barrier coatings (TBCs) have gained significant applications in increasing the gas inlet temperatures. Insulating characteristics of ceramic TBCs allow the operation at up to 150~250 ˚C higher gas temperatures. Because of the severe turbine engine operating conditions that include high temperature, steep temperature gradient, thermal cycling, oxidation and hot-corrosion, TBCs can fail by spallation at the interface between the metal and ceramic. The lack of understanding in failure mechanisms and their prediction warrant a development of non-destructive evaluation technique that can monitor the quality and degradation of TBCs. In addition, the development of NDE technique must be based on a robust correlation to the characteristics of TBC failure. The objective of this study is to develop electrochemical impedance spectroscopy (EIS) as a Non-destructive evaluation (NDE) technology for application to TBCs. To have a better understanding of the multilayer TBCs using EIS they were divided into individual layers and EIS were performed on them. The individual layers included polycrystalline ZrO2-7~8 wt.%Y2O3 (YSZ) (topcoat) of two different densities were subjected to sintering by varying the sintering temperature and holding time for three different thickness and hot extruded NiAl alloy buttons which were subjected to isothermal oxidation with varying temperature and time. NiAl is as similar to the available commercial bondcoats used in TBCs. Then degradation monitoring with electrolyte penetration was carried out on electron beam physical vapor deposited (EB PVD) TBCs as a function of isothermal exposure. Quality control for air plasma sprayed TBCs were carried out as a function of density, thickness and microstructure. Dense vertically cracked TBCs were tested as a function of vertical crack density and thickness. Electrochemical impedance response was acquired from all specimens at room temperature and analyzed with an AC equivalent circuit based on the impedance response as well as multi-layered structure and micro-constituents of specimens. Physical and microstructural features of these specimens were also examined by optical and electron microscopy. The EIS measurement was carried out in a three-electrode system using a standard Flat Cell (K0235) from Princeton Applied Research™ and IM6e BAS ZAHNER™ frequency response analyzer. The electrolyte employed in this investigation was 0.01M (molar) potassium Ferri/Ferro Cyanide {(K3Fe(CN)6/K4Fe(CN)6·3H2O)}. The thickness and density were directly related to the resistance and capacitance of the polycrystalline YSZ with varying thickness and open pores. As the effective thickness of the YSZ increased with sintering time and temperature, the resistance of the YSZ (RYSZ) increased proportionally. The variation in capacitance of YSZ (CYSZ) with respect to the change in porosity/density and thickness was clearly detected by EIS. The samples with high porosity (less dense) exhibited large capacitance, CYSZ, compared to those with less porosity (high density), given similar thickness. Cracking in the YSZ monoliths resulted in decrease of resistance and increase in capacitance and this was related to the electrolyte penetration. Growth and spallation of TGO scale on NiAl alloys during isothermal oxidation at various temperatures and holding time was also correlated with resistance and capacitance of the TGO scale. With an increase in the TGO thickness, the resistance of the TGO (RTGO) increased and capacitance of the TGO (CTGO) decreased. This trend in the resistance and capacitance of the TGO changed after prolonged heat treatment. This is because of the spallation of the TGO scale from the metal surface. The parabolic growth of TGO during high temperature oxidation was inversely proportional to the capacitance of TGO, excluding the abrupt changes associated with the failure. As a function of isothermal exposure for EB-PVD TBCs, initial increase in the resistance of YSZ with thermal exposure was observed perhaps due to the high temperature sintering of YSZ. The parabolic growth of TGO during high temperature oxidation was inversely proportional to the capacitance of TGO. An explanation based on electrolyte penetration into sub-critical damage is proposed for the gradual decrease in the resistances of YSZ and TGO with prolonged thermal exposure. Observation of exposed metallic bond coat surface on the fracture surface, which readily provides conduction, was related to the abrupt and large increase in the capacitance of YSZ and TGO. A direct relation between the resistance of the YSZ (RYSZ) and density of the YSZ was observed for APS TBCs with varying topcoat density. APS TBCs with varying topcoat chemistry and thickness were tested and directly related to resistance of topcoat. With the increase in the topcoat thickness, the capacitance decreased and the resistance increased. The higher values of CCAT and RCAT compared to that of CYSZ and RYSZ were related to the higher dielectric constant and resistivity of CaTiO3. Dense vertically cracked TBCs were tested with varying crack density were tested and the variation in the resistance was related indirectly to the cracks and directly to the difference in the thickness of the topcoat. EB-PVD TBCs with varying density (dense and columnar) were tested and the variation in resistance was attributed to the dense structure and columnar structure of the topcoat with columnar structure having lower resistance because of more electrolyte penetration through the columnar structure. From this study, EIS showed a potential as a NDE technique for quality assurance and lifetime remain assessment of TBCs. Future work should continue on developing a mathematical model to study the impedance curves and come up with a model for individual layers of TBC and then sum them up to get the multilayered TBC response. The flexible instrument probe of EIS needs to be designed and tested for field evaluation of TBCs.
|
58 |
Impedance Sensing of N2A and Astrocytes As Grounds for a Central Nervous System Cancer Diagnostic DeviceGrove, Fraser Traves Smith 01 June 2012 (has links) (PDF)
This thesis utilizes previously described manufacturing and design techniques for the creation of a PDMS-glass bonded microfluidic device, capable of electrochemical impedance spectroscopy (EIS). EIS has been used across various fields of research for different diagnostic needs. The major aim of this thesis was to capture cancerous and non-cancerous cells between micron sized electrodes within a microfluidic path, and to complete analysis on the measured impedances recorded from the two differing cell types. Two distinct ranges of impedance frequency were analyzed – the α dispersion range, which quantifies the impedance of the membranes of the cells of interest, and the β dispersion range, which quantifies the impedance of the cytosol of the cells of interest. This thesis is unique in the fact that it looks at the cellular impedances of two types of neural cells, which has not been documented previously in literature. The type of cancerous cells analyzed were Neuro-2-A cells, an immortalized line of murine glio/neuroblastoma. The type of non-cancerous cells analyzed were murine primary astrocytes, a mortal line of neurological support cells found throughout the nervous system, and with great abundance in the brain.
By using a LabView program coded by a previous Cal Poly student, a sweep scan across a wide frequency range was completed on both cell types, and statistical analysis was completed on target frequencies of interest. A significant difference was found between the two cell lines’ membrane impedances, however no difference was found between the cytoplasm impedances.
In total, this thesis aimed to fabricate a reusable microfluidic device capable of EIS for future Cal Poly students, create a protocol suitable for cell culturing and device operation, and to lay a foundation of knowledge for impedance comparisons regarding neural cancerous and non-cancerous cells.
|
59 |
Biofilm Growth Dynamics Characterized by Electrochemical Impedance SpectroscopyKearns, Kaitlyn LeeAnn 28 October 2022 (has links)
No description available.
|
60 |
Damage Evolution of Pipeline API X52 Steel with Different Coating Conditions under Cathodic Protection in Soil and NS4 SolutionsLi, Ximing 16 September 2014 (has links)
No description available.
|
Page generated in 0.1219 seconds