Spelling suggestions: "subject:"electrochemical impedance dpectroscopy"" "subject:"electrochemical impedance espectroscopy""
91 |
Elaboration et caractérisation de poudres nanostructurées de MnO2 et de polypyrrole : application comme matériaux d'électrodes dans des dispositifs de stockage de l'énergie / Elaboration and characterization of nanostructured powders of MnO2 and polypyrrole : application as materials of electrodes in devices of energy storageBenhaddad, Lynda 15 January 2014 (has links)
Le présent travail de thèse porte sur la synthèse chimique de matériaux nanostructurés inorganique et organique utilisés comme matériaux d’électrodes pour le stockage de l’énergie. L’objectif de la première partie de cette thèse a été d’optimiser les conditions expérimentales de la synthèse chimique de la variété cristallographique γ-MnO2, reconnue comme la plus réactive, afin d’étudier ses performances électrochimiques comme matériau de batterie dans le milieu KOH 1 M. Les résultats de la caractérisation des poudres de MnO2 synthétisées à différentes conditions (température de synthèse, durée de synthèse et identité d’oxydant) sont présentés dans le chapitre III. L’étude de la réactivité électrochimique dans KOH 1 M des poudres de MnO2 a été réalisée par voltampérométrie cyclique et impédance électrochimique à l’aide de la microélectrode à cavité et les résultats sont présentés dans le chapitre IV. Ces derniers montrent que la variété cristallographique γ-MnO2 synthétisée par oxydation des ions Mn2+ par Na2S2O8 à 90°C pendant 24 h est la plus réactive par rapport aux autres variétés synthétisées.La deuxième partie de cette thèse porte sur l’utilisation de la poudre de γ-MnO2 ainsi synthétisée comme agent d’oxydation, grâce à ses propriétés oxydantes vis-à-vis du monomère pyrrole, et comme template sacrificiel, grâce à sa structure nanométrique, pour la production de poudres de polypyrrole envisagées comme matériaux d’électrode de supercondensateur pour l’amélioration de la performance capacitive d’un carbone activé. Dans le chapitre V sont exposés les résultats de la caractérisation du polypyrrole nanostructuré synthétisé par le γ-MnO2 à différentes conditions (durée de polymérisation, pH du milieu de synthèse et la morphologie du MnO2). Le mécanisme réactionnel de polymérisation a été étudié par les méthodes de complexation et de voltampérométrie cyclique. Les résultats de l’étude électrochimique réalisée par voltampérométrie cyclique et impédance électrochimique à l’aide d’un dispositif de type Swagelok sont présentés dans le chapitre VI. Ces résultats montrent que l’ajout de la poudre de polypyrrole nanostructuré améliore la performance capacitive du carbone activé. / The present thesis deals with the chemical synthesis of nanostructured inorganic and organic materials used as electrode materials for energy storage. The aim of the first part of this thesis was to optimize the experimental conditions of the chemical synthesis of the crystallographic variety γ-MnO2, recognised as the most reactive form, in order to study its electrochemical performance as a battery material in the medium KOH 1 M. The results of the characterization of MnO2 powders synthesized at different conditions (synthesis temperature, synthesis time and oxidant identity) are presented in chapter III. The study of the electrochemical reactivity of the synthesized MnO2 powders in KOH 1 M was realised by cyclic voltammetry and electrochemical impedance using a cavity microelectrode. The results presented in the chapter IV show that the crystallographic variety γ-MnO2 synthesized by Mn2+ ions oxidation by Na2S2O8 at 90°C for 24 h is the most reactive form comparatively with other synthesized powders. The second part of this thesis deals with the use of synthesized γ-MnO2 powder as oxidizing agent, due to its oxidizing properties towards pyrrole monomer, and sacrificial template, due to its nanometric structure, for the production of polypyrrole powders envisaged as electrode material in supercapacitors for the improvement of the capacitive performance of activated carbon. The chapter V exposes the results of the chemical synthesis of nanostructured polypyrrole synthesized by γ-MnO2 at different conditions (polymerization time, pH of the synthesis medium and the morphology of MnO2). The reaction mechanism was studied by complexation and cyclic voltammetry. The results of the electrochemical study realized by cyclic voltammetry and electrochemical impedance, carried out with the help of a Swagelok device, are presented in chapter VI. These studies showed that adding nanostructured polypyrrole powder improves the capacitive performance of the activated carbon.
|
92 |
Silica Coated Core-Shell Quantum Dot-based Electro-Immunosensor for Interferon Gamma TB Disease BiomarkerMini, Sixolile January 2020 (has links)
>Magister Scientiae - MSc / Tuberculosis (TB) is a disease that results from infection by Mycobacterium tuberculosis, which is regarded the most common infecting organism. TB has killed countless numbers of people particularly in underdeveloped countries. TB bacteria can remain inactive or in dormant state for years without causing symptoms or spreading to other subjects, but as soon as the immune system of the host becomes weakened, the bacteria become active and infect mainly the lungs along with other parts of body. TB cases are further aggravated by other illnesses that affect the immune system, such as human immune virus (HIV), which is very prevalent in resource-poor countries. Interferon-gamma (IFN-γ) is a TB biomarker that has found to have all the qualities that are needed to help and cure Tuberculosis disease. Early diagnosis and treatment are essential measures for effectively controlling the disease. Traditional microbial culture-based tests are the most common methodologies currently used. Usually, these methods involve cell culture, cell counts, and cell enrichment, but this process is time-consuming and laborious, especially for the slow-growing bacteria like M. tuberculosis. Sputum smear is one of the methods currently used to detect acid fast bacilli (AFB) in clinical specimens or fluorescent staining. It is a cost-effective tool for diagnosing patients with TB and to monitor the progress of treatment especially in developing countries. The traditional method of inoculating solid medium such as Lowerstein-Jensen (L-J) or 7H10/7H11 media is also used currently it is slow and takes 6-8 weeks of incubation to diagnose the infection and further more time to determine the susceptibility patterns. The microscopic observation drug susceptibility (MODS) assay they are also used currently they rely on light microscopy to visualize the characteristic cording morphology of M. tuberculosis in liquid culture. MODS has shorter time to culture positivity (average 8 days) compared with LJ medium (average ~26 days), they are very expensive. The Gen-Probe assay specific for M. tuberculosis complex is a rapid detection that is also used, nucleic acid amplification (NAA) test results can be obtained as fast as in two hours (provided if a positive culture is present); it also has a high sensitivity of 99% and specificity of 99.2%. It holds the disadvantage of needing of positive culture that can take several days. Enzyme-linked immunosorbent assay (ELISA), is a test that uses antibodies and colour change to identify a substance. ELISA is an assay that uses a solid-phase enzyme immunoassay (EIA) to detect the presence of a substance, usually an antigen, in a liquid sample or wet sample. It can be used to detection of Mycobacterium antibodies in tuberculosis. The Amplified Mycobacterium Tuberculosis Direct Test (AMTDT) is used for the detection of M. tuberculosis it enables the amplification and detection of M. tuberculosis rRNA directly from respiratory specimens. The diagnostic methods employing genetechnology based on the amplification of DNA or RNA are expected to improve the speed, sensitivity, and specificity of Mycobacterium tuberculosis detection. TB rapid cultivation detection technique, such as MB/BacT system, BactecMGIT 960 system and flow cytometry. The BACTEC MGIT960 system (Becton Dickinson, Sparks, MD) performs incubation and reading of the tubes continuously inside the machine using a predefined algorithm to interpret the fluorescent signal and giving the results as positive or negative. When performing DST, the BACTEC MGIT960 interprets the results as susceptible or resistant to the antibiotic under study. Results are available within 8 days. A recent meta-analysis of the published studies found high accuracy and high predictive values associated with the use of BACTEC MGIT960. These methods are more sensitive and rapid than the traditional microbial culture-based methods. However, they cannot provide the detection results in real-time and most of these methods are centralized in large stationary laboratories because complex instrumentation and highly qualified technical staff are required. Recently, Food and Drug Administration (FDA) approved two new assays that were introduced. These two assays detect in vitro a specific immune response to M. tuberculosis. These tests are the QuantiFERON-TB Gold In-Tube (Cellestis/Qiagen, Carnegie, Australia) and the T-SPOT.TB assay (Oxford Immunotec, Abingdon, United Kingdom). Both assays use whole blood from the patient and measure the production of interferon gamma after the whole blood is exposed to specific antigens from M. tuberculosis. These tests are based on the knowledge that IFN-γ is a product of an active cell-mediated immune response induced by M. tuberculosis. However, TB detection remains a major obstacle due to several drawbacks of these methods. To date, the number of diagnosis approaches for TB has increased as the disease continues to be a major public health problem worldwide and most conventional detection technologies present difficulties in recognizing the presence of M. tuberculosis, since they are time consuming, do not provide clinically reliable results and significantly lack of sensitivity.
This thesis focusedon developing two binary and one ternary-electrochemically quantum dots, all synthesised at room temperature in aqueous media for detecting (IFN-γ). Copper telluride (CuTe) and Zinc telluride (ZnTe) was prepared to check how does the two quantum dot behave individual and also to check on how they behave when they are combined and formed ternary quantum dots (CuZnTe). The electrochemical studies of the binary CuTe quantum dots, ZnTe quantum dots and the ternary CuZnTe core-shell quantum dots reveal that ternary quantum dots were stable and showed a significant enhancement in the conductivity of CuZnTe core-shell solution compared to that of CuTe and ZnTe, all studied in solution. The three different quantum dots were capped with three different capping reagents which are tetraethyl orthosilicate (TEOS), thioglycolic acid (TGA), (3-mercaptopropyl) trimethoxysilane (MPS). In the study, a label-free electrochemical immunosensor for the detection of interferon gamma (IFN-γ) was prepared for the first time using ternary quantum dots. The biosensor consists of water-soluble silica coated Copper Zinc telluride (CuZnTe core-shell) quantum dots conjugated to a gold electrode. The antibody-antigen were then conjugated on the CuZnTe core-shell QD modified gold electrode. Results from synthesis of two different binary quantum dots are also presented in the study and compared to the results of the CuZnTe core-shell QDs. The CuTe quantum dots had a small average size which was confirmed through HRTEM, SAXS and XRD analysis
|
93 |
Charakterizace materiálů pro perovskitové solární články impedančními metodami / Impedance spectroscopy characterization of perovskite solar cell materialsKřečková, Jitka January 2020 (has links)
The Master‘s thesis deals with the topic of perovskite solar cells with the main focus on the materials used for the active layer. In the introductory part, the electrical and optical properties of halide perovskites are described and specific examples of perovskite crystals are introduced. The description of impedance and photoimpedance measurement methods used for characterization of perovskite solar cells is also included in the thesis. The measurement of electrochemical impedance spectroscopy was conducted on four perovskite crystals and equivalent circuit was formed to fit the obtained data. Parameters of the circuit elements were acquired using the fitting method and were further evaluated in experimental part of this thesis.
|
94 |
Charakterizace elektrochemických vlastností hořčíkových baterií při modifikaci elektrolytu / Characterization of electrochemical properties of magnesium batteries in electrolyte modificationHonč, Jiří January 2020 (has links)
This thesis deals with novel electrolytes for magnesium batteries. Prepared electrolytes were composed of affordable solvents and chemicals, which can be handled at normal laboratory conditions. Specifically, solutions of tetrahydrofurane and dimethylsulfoxide with magnesium chloride, aluminium chloride, nitrilotriacetic acid and disodium ethylenediaminetetraacetic acid, were prepared. To determine electrolyte ability of magnesium stripping and deposition, the cyclic voltammetry was used. The kinetics of electrochemical reactions in terms of polarization resistance was studied by electrochemical impedance spectroscopy. Based on scanning electron microscopy and EDS analysis, the effect of atmospheric oxygen and humidity on magnesium electrode corrosion during cycling was discussed.
|
95 |
Multi-Frequency and Multi-Sensor Impedance Sensing Platform for Biosensing ApplicationsBhatnagar, Purva January 2018 (has links)
No description available.
|
96 |
Sensitivity of Electrochemical Impedance Spectroscopy Measurements to Concrete Bridge Deck PropertiesArgyle, Hillary McKenna 20 March 2014 (has links) (PDF)
Numerous methods have been developed to measure corrosion potential relating to chloride infiltration in concrete, including an emerging application of electrochemical impedance spectroscopy (EIS). EIS involves measurements of electrical impedance to evaluate the corrosion potential of steel reinforcement in concrete. With EIS, current is injected vertically into the concrete bridge deck between the surface and the embedded reinforcing steel, usually the top mat, to evaluate the degree to which the reinforcing steel is protected from chloride infiltration by the entire bridge deck system. The objectives of this research were to 1) investigate the sensitivity of EIS measurements obtained at various frequencies to specific deck properties, 2) recommend a particular frequency or range in frequency at which impedance measurements can differentiate among various levels of corrosion protection for reinforcing steel in concrete bridge decks, and 3) compare impedance values measured at the recommended frequency(ies) to more traditional test measurements relating to corrosion of reinforcing steel in concrete bridge decks. This research involved impedance testing of 25 concrete slabs, divided into five sets. The effects of sealant presence, curing time, temperature, moisture content, cover depth, water-to-cementitious materials ratio, air content, chloride concentration, and epoxy coating condition on individual impedance measurements were evaluated. For the controlled laboratory experiments, sealant presence, curing time, temperature, moisture content, cover depth, water-to-cementitious materials ratio, air content, and epoxy coating condition were shown to have a statistically significant effect on impedance measurements, with p-values less than 0.05. The statistical analyses indicated that impedance testing in the frequency range of approximately 100 Hz to 1 kHz would be expected to provide the best data about the degree to which the reinforcing steel is protected from chloride infiltration by a bridge deck system. In this frequency range, a high level of differentiation among levels of corrosion protection is expected, and a high speed of data collection is also possible. For the uncontrolled laboratory experiments, a single frequency of 200 Hz was selected for impedance testing. Statistical analyses were performed to compare impedance with more traditional test measurements relating to corrosion of reinforcing steel in concrete bridge decks. Longitudinal and transverse cover, dry and wet resistivity, dry and wet half-cell potential, dry linear polarization, and chloride concentration were determined to be correlated with impedance, with p-values less than 0.15.
|
97 |
Corrosion in Tinplate Cans Used for Food StorageChang, Kuo-Hsiang January 2021 (has links)
No description available.
|
98 |
Interface Engineering of Solid-State Li Metal Batteries with Garnet Electrolytes / ガーネット電解質を用いたリチウム金属電池の界面工学に関する研究Cheng, Eric Jianfeng 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第24632号 / 工博第5138号 / 新制||工||1982(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 安部 武志, 教授 作花 哲夫, 教授 陰山 洋 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
99 |
STUDY OF ANODIC OXIDE FILMS ON TITANIUM AND TITANIUM-ZIRCONIUM ALLOYS AND THEIR POTENTIAL FOR CAPACITIVE ENERGY STORAGEChung, Min Kyong 27 January 2016 (has links)
No description available.
|
100 |
Application of hydrotalcites as corrosion-inhibiting pigments in organic coatingsMahajanam, Sudhakar P.V. 24 August 2005 (has links)
No description available.
|
Page generated in 0.0768 seconds