• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Surface Active Sites: An Important Factor Affecting the Sensitivity of Carbon Anode Material towards Humidity

Fu, L. J., Zhang, H. P., Wu, Y. P., Wu, H. Q., Holze, R. 31 March 2009 (has links) (PDF)
In this paper, we report that various kinds of active sites on graphite surface including active hydrophilic sites markedly affect the electrochemical performance of graphite anodes for lithium ion batteries under different humidity conditions. After depositing metals such as Ag and Cu by immersing and heat-treating, these active sites on the graphite surface were removed or covered and its electrochemical performance under the high humidity conditions was markedly improved. This suggests that lithium ion batteries can be assembled under less strict conditions and that it provides a valuable direction to lower the manufacturing cost for lithium ion batteries.
12

Surface Active Sites: An Important Factor Affecting the Sensitivity of Carbon Anode Material towards Humidity

Fu, L. J., Zhang, H. P., Wu, Y. P., Wu, H. Q., Holze, R. 31 March 2009 (has links)
In this paper, we report that various kinds of active sites on graphite surface including active hydrophilic sites markedly affect the electrochemical performance of graphite anodes for lithium ion batteries under different humidity conditions. After depositing metals such as Ag and Cu by immersing and heat-treating, these active sites on the graphite surface were removed or covered and its electrochemical performance under the high humidity conditions was markedly improved. This suggests that lithium ion batteries can be assembled under less strict conditions and that it provides a valuable direction to lower the manufacturing cost for lithium ion batteries.
13

Polyacrylonitrile-based Hierarchical Porous Carbons for Supercapacitors

Zhu, Shijin 19 September 2022 (has links)
The globally increasing energy demand that results from the rapid development of modern society has created intensive attention towards the importance of energy efficiency. The areas of energy storage and energy conversion have become one of the most important topics in scientific community at present. As new generation energy storage elements, supercapacitors have exhibited promising practical prospects in the information, transportation, electronics and other sectors due to their charge and discharge performance at high rate, high power density as well as long cycle life. Energy density, including gravimetric energy density, areal energy density and volumetric energy density, is one of the most critical indicator evaluating the performance of supercapacitors. The electrochemical performance of supercapacitors depends mainly on the electrochemical activities and kinetic properties of electrode materials. Carbonaceous materials are deemed to be highly promising, and therefore are extensively investigated energy storage materials for supercapacitors because of their environmental friendliness, low-cost production and outstanding chemical inertness during charging-discharging processes. The specific surface area has been long thought to be the main factor influencing the capacitance of carbonaceous materials. However, the pore structure is of similar importance. High specific surface areas are always arising from a high content of micropores. However, pore radii in the sub-nanometer range impede the ionic charge transfer ability significantly and thus cause a damping of capacitance. In this thesis, hierarchical porous carbons and their composite materials were fabricated by using polyacrylonitrile as carbon precursor for a tailored step-by-step pore forming method, including phase inversion, CaCO3 activation and KOH activation. The materials were thoroughly characterized by XRD, SEM, TEM, BET, XPS and Raman spectroscopy to ascertain the chemical and structural features. The electrochemical properties were studied by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) in detail to analyze the pore effect, which strongly influence their electrochemical properties. Porous carbons with high specific surface areas up to 2315 m2 g-1 and high pore volume of 1.9 cm3·g-1 were prepared. A step-wise pore forming method was employed to ensure a high specific surface area and high content of macro/mesopore at the same time. The relationship between pore structure, electrochemical capacitance and rate capability was investigated by changing the content of micropores. For a same specific surface area, a higher micropore content led to a lower capacitance and poorer rate capability. Based on these results, the capacitance was optimized to be 286.8 F g-1. The areal energy density of the supercapacitors can be improved by increasing the mass loading in a certain area directly. However, insufficient electrochemical reaction may be caused by a lack of unhindered electrical and ionic charge transfer routes, resulting in inefficient material utilization. This problem is addressed by designing hierarchical pore structures with embedded conductive additives. Thus, hierarchical porous carbons were modified by embedding carbon nanotubes (CNTs), followed by coverage with thin layers of birnessite. Owing to the hierarchical pore design and the very high pore volume, the birnessite coverage did not cause pore blocking. At the same time, an intimate contact between carbon and birnessite was established. A high area energy density of 627.8 μWh·cm-2 was obtained based on an optimized mass loading of 13.9 mg cm-2. The volumetric energy density of supercapacitors was determined by the density and porosity of active materials. Similarly, the dense active materials not always generate high specific capacitance because of an increased dead mass. However, too porous active materials do not provide sufficient volumetric capacitance due to a waste of space. Thus, density and porosity must be balanced by hierarchical pore structure design so that all pores are interconnected and can be accessed by ions. At the same time, the content of these pores should be as low as possible to save space. Based on the results, highly hierarchical porous carbons were synthesized and embedded into conductive carbon foam to combine electronic conductivity with ionic transfer. In that way, a volumetric energy density as high as 19.44 µWh cm-3 at a volumetric power density of 500 mW cm-3 was generated.
14

Computational Fluid Dynamics Modelling of Solid Oxide Fuel Cell Stacks

Nishida, Robert Takeo 02 October 2013 (has links)
Two computational fluid dynamics models are developed to predict the performance of a solid oxide fuel cell stack, a detailed and a simplified model. In the detailed model, the three dimensional momentum, heat, and species transport equations are coupled with electrochemistry. In the simplified model, the diffusion terms in the transport equations are selectively replaced by rate terms within the core region of the stack. This allows much coarser meshes to be employed at a fraction of the computational cost. Following the mathematical description of the problem, results for single-cell and multi-cell stacks are presented. Comparisons of local current density, temperature, and cell voltage indicate that good agreement is obtained between the detailed and simplified models, verifying the latter as a practical option in stack design. Then, the simplified model is used to determine the effects of utilization on the electrochemical performance and temperature distributions of a 10 cell stack. The results are presented in terms of fluid flow, pressure, species mass fraction, temperature, voltage and current density distributions. The effects of species and flow distributions on electrochemical performance and temperature are then analyzed for a 100 cell stack. The discussion highlights the importance of manifold design on performance and thermal management of large stacks. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2013-09-30 15:55:18.627
15

Layered transition metal sulfide- based negative electrode materials for lithium and sodium ion batteries and their mechanistic studies

Gao, Suning 21 September 2020 (has links)
The environmental concerns over the use of fossil fuels, and their resource constraints, as well as energy security concerns, have spurred great interest in generating electric energy from renewable sources. Solar and wind energy are abundant and potentially readily available. However, the generation of sustainable energies is generally intermittent and these energies have geographical limits which are relative to current large-scale energy generation facilities. To smooth out the intermittency of renewable energy production, low-cost electrical energy storage (EES) devices are becoming highly necessary. Among these EES technologies, lithium ion batteries are one of the most promising EES devices in terms of the characteristics of high gravimetric, volumetric energy density and environmentally friendly compared to lead-acid batteries and Ni-Cd batteries. Other advantages of Li-ion batteries are the ability of being recharged hundreds of times and high stability. Moreover, the dramatically growing market share of hybrid electrical and electrical vehicles in automobiles has motivated the development of high energy and power density LIBs with high mass loading. However, there are still several remaining challenges in LIBs for their further application in grid-scale ESSs. One of the global issues to date is the high costs including the cost of raw materials such as lithium and cobalt, production, machining, and transportation, etc. In addition, the increasing energy demand thereby leads to the pressures on the resource supply chains and thus increasing the cost of LIBs. Therefore, it is urgent to find a complementary or alternative EES device in a short term to satisfy the growing energy demand. Under the background of fast development of LIBs technology as well as the establishment of Li chemistry fundamentals in the last 40 years, rechargeable battery systems utilizing Na element have been extensively studied to develop less expensive and more sustainable ESSs. The sodium resource is abundantly existed in the planet. According to the periodic table, sodium is the most possible alternative to lithium, because it has the similar chemical and physical properties towards to lithium. As a consequence, the established fundamentals in LIBs can be reasonably analogized to SIBs. Moreover, Sodium is readily available from various sources-foods that contain sodium naturally, foods containing salt and other sodium-containing ingredients. Therefore, The study of SIBs technology and sodium chemistry are gaining increasing interests and attentions both in the scientific researchers and battery industry. However, theoretically speaking, the energy density of SIBs is lower than that of LIBs by using same electrode materials because sodium is more than 3 times heavier than Li as well as the standard electrode potential of Na (-2.71 V) is higher than Li (-3.04 V). Therefore, SIBs are not thought as an ideal candidate to substitute LIBs in the fields of small or middle-size portable devices, but are more favorable in a large grid support where the operation cost is the primary choice. Negative electrode is important component in a single cell. Exploring negative electrode materials with high electrochemical performance in LIBs and SIBs is indeed required for fulfilling the spreading energy demand. Among various negative electrode materials, layered transition metal sulfides (MSs) are reckoned as a promising class with high theoretical specific capacity and power capability due to their intrinsically layered structure which is beneficial to the diffusion of Li+ and Na+ . However, layered transition metal sulfides are suffering from intrinsically poor electrical conductivity, volume changes, high irreversibility and sluggish kinetics during Li+ /Na+ storage process. To address these issues, numerous strategies are applied to explore high performance LIBs and SIBs negative electrode materials in this PHD thesis. / Die ökologischen Bedenken hinsichtlich der Nutzung fossiler Brennstoffe und deren Ressourcenbeschränkungen sowie Bedenken hinsichtlich der Energiesicherheit haben großes Interesse an der Erzeugung elektrischer Energie aus erneuerbaren Quellen geweckt. Sonnen- und Windenergie sind im Überfluss vorhanden und potenziell leicht verfügbar. Die Erzeugung nachhaltiger Energien ist jedoch in der Regel intermittierend, und diese Energien haben geographische Grenzen, die im Vergleich zu den derzeitigen großen Energieerzeugungsanlagen relativ begrenzt sind. Um die Unterbrechungen in der Produktion erneuerbarer Energien auszugleichen, werden kostengünstige elektrische Energiespeicher (EES) dringend notwendig. Unter diesen EES-Technologien sind Lithium-Ionen-Batterien eines der vielversprechendsten EES-Geräte hinsichtlich der Eigenschaften einer hohen gravimetrischen, volumetrischen Energiedichte und umweltfreundlich im Vergleich zu Blei-Säure-Batterien und Ni-Cd-Batterien. Weitere Vorteile von Lithium-Ionen-Batterien sind die Fähigkeit, hunderte Male wieder aufgeladen werden zu können, und die hohe Stabilität. Darüber hinaus hat der dramatisch wachsende Marktanteil von Hybrid- und Elektrofahrzeugen in Automobilen die Entwicklung von LIBs mit hoher Energie- und Leistungsdichte und hoher Massenbelastung motiviert. Es gibt jedoch noch einige Herausforderungen in den LIBs, die für die weitere Anwendung in den ESSs im Rastermaßstab erforderlich sind. Eine der bisherigen globalen Fragen sind die Gesamtkosten einschließlich der Kosten für Rohstoffe wie Lithium und Kobalt, Produktion, Bearbeitung und Transport usw. Darüber hinaus führt die steigende Energienachfrage dadurch zu einem Druck auf die Ressourcenversorgungsketten und damit zu einer Verteuerung der LIBs. Daher ist es dringend erforderlich, kurzfristig eine ergänzende und alternative EES-Technologie zu finden, um den wachsenden Energiebedarf zu decken. Vor dem Hintergrund der schnellen Entwicklung der LIBs-Technologie sowie der Etablierung der Grundlagen der Li-Chemie in den letzten 40 Jahren wurden wiederaufladbare Batteriesysteme, die das Na-Element verwenden, umfassend untersucht, um kostengünstigere und nachhaltigere ESSs zu entwickeln. Die Natriumressource ist auf der Erde im Überfluss vorhanden. Nach dem Periodensystem ist Natrium die möglichste Alternative, da es die ähnlichen chemischen und physikalischen Eigenschaften von Lithium hat. Folglich lassen sich die etablierten Grundlagen der LIBs in vernünftiger Weise mit denen der SIBs vergleichen. Darüber hinaus ist Natrium aus verschiedenen Quellen leicht erhältlich - aus Lebensmitteln, die von Natur aus Natrium enthalten, aus Lebensmitteln, die Salz und andere natriumhaltige Zutaten enthalten. Daher gewinnt das Studium der SIBs-Technologie und Natriumchemie sowohl in der wissenschaftlichen Forschung als auch in der Batterieindustrie zunehmend an Interesse und Aufmerksamkeit. Theoretisch gesehen ist jedoch die Energiedichte von SIBs bei Verwendung der gleichen Elektrodenmaterialien niedriger als die von LIBs, da Natrium mehr als dreimal schwerer als Li ist und das Standardelektrodenpotential von Na (-2,71 V) höher als Li (-3,04 V) ist. Daher werden SIBs nicht als idealer Kandidat für den Ersatz von LIBs im Bereich kleiner oder mittelgroßer tragbarer Geräte angesehen, sondern sie sind günstiger bei einer großen Netzunterstützung, bei der die Betriebskosten die primäre Wahl sind. Die negative Elektrode ist ein notwendiger und wichtiger Teil in einer einzelnen Zelle. In der Tat ist es zur Erfüllung des sich ausbreitenden Energiebedarfs erforderlich, negative Elektroden-Materialien mit hoher elektrochemischer Leistung in LIBs und SIBs zu untersuchen. Unter den verschiedenen Materialien für negative Elektroden gelten geschichtete Übergangsmetallsulfide (MS) als eine vielversprechende Klasse mit hoher theoretischer spezifischer Kapazität und Leistungskapazität aufgrund ihrer intrinsisch geschichteten Struktur, die der Diffusion von Li+ und Na+ förderlich ist. Allerdings leiden schichtförmige Übergangsmetallsulfide unter inhärent schlechter elektrischer Leitfähigkeit, Volumenänderungen, hoher Irreversibilität und träger Kinetik während des Li+ /Na+ -Speicherprozesses. Um diese Probleme anzugehen, werden in dieser Doktorarbeit zahlreiche Strategien zur Untersuchung von Hochleistungs-LIBs und SIBs für negative Elektrodenmaterialien angewandt.

Page generated in 0.0885 seconds