• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 857
  • 269
  • 170
  • 127
  • 18
  • 17
  • 14
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 7
  • 6
  • Tagged with
  • 1923
  • 429
  • 243
  • 156
  • 156
  • 142
  • 138
  • 132
  • 132
  • 122
  • 115
  • 115
  • 113
  • 112
  • 106
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
411

Improved performance of metal hydride electrode of Ni-MH battery with carbon nanotubes.

Sultana, Humara, Materials Science & Engineering, Faculty of Science, UNSW January 2006 (has links)
In the global search for renewable sources of energy, hydrogen is a promising candidate in transportation and electronic applications. Carbon nanotubes (CNTs) have the largest hydrogen storage capacity among the hydrogen storage materials known at present. The Ni-MH battery can be used to store and then discharge large amounts of hydrogen reversibly by using hydrogen storage materials as negative electrode. The electrochemical hydrogen storage performances of metal hydride electrodes with different levels of multi wall carbon nanotubes (20%, 15%, 10%, 5% and 2% of Ni-MH battery's active materials) has been investigated under similar charge-discharge conditions. Electrochemical test cell consisted of a single hydrogen storage negative electrode sandwiched between two NiOOH/Ni(OH)2 positive electrodes. A 6M aqueous KOH solution was used as electrolyte. Electrochemical properties such as specific discharge capacity, high rate charge-discharge capability and cycle life stability have been investigated. The morphology and structure of negative electrode material were examined by scanning electron microscopy, transmission electron microscopy and X-ray diffraction analysis. Chemical analysis of the hydrogen storage alloy was performed using electron probe microanalysis, electron diffraction spectroscopy and induced coupled plasma spectroscopy analysis. Hydrogen absorption-desorption properties were measured in terms of pressure-composition-isotherm curves. It has been found in this study that the presences of CNTs significantly enhanced the overall electrochemical properties of the Ni-MH battery. Maximum specific discharge capacity was observed for 5% CNTs electrode reaching 243 mAh/g, whereas 0% CNTs could only reach 229 mAh/g. High rate charge and discharge capabilities of 5% CNTs electrodes were ~ 241% and 250% higher than the corresponding values for 0% CNTs electrode. Furthermore, the differences in electrochemical hydrogen storage of CNTs with different diameters of 10-20 nm, 20-40 nm, 40-60 nm, and 60-100 nm were investigated. Electrochemical results demonstrated that CNTs with different diameters showed a large variation in the electrochemical hydrogen storage capability under the similar experimental condition. A comparison between electrodes with different CNTs studies was carried out in order to optimize nanotubes choices for Ni-MH battery. It was found that smaller tube diameters, 20-40 nm and 5% CNTs negative electrode showed the best electrochemical properties of Ni-MH battery system.
412

Peptide modified electrochemical sensors for the detection of heavy metal ions

Chow, Edith, Chemistry, Faculty of Science, UNSW January 2006 (has links)
In this research, the determination of trace concentrations of heavy metal ions was investigated using peptide modified electrochemical biosensors. The biosensor has several advantages over atomic absorption spectroscopy and inductively coupled plasma mass spectrometry by offering greater simplicity in use and the possibility of determining the bioavailability of heavy metals. Oligopeptides were modified on the electrode surface through the spontaneous self-assembly of thiols on gold. Firstly, 3-mercaptopropionic acid (MPA) was self-assembled onto the gold surface followed by activation of the carboxyl groups using a combination of carbodiimide and succinimide chemistry for coupling of the N-terminus of the peptide to occur. Using this generic strategy, Gly-Gly-His was used for the determination of copper ions. Cu2+ was accumulated at the MPA-Gly-Gly-His modified electrode at open circuit potential followed by electrochemical measurements. The reduction of Cu2+ to form underpotential deposited copper in the Osteryoung square wave voltammogram was used for quantification. The influence of various factors on the performance was investigated and after the optimal conditions had been identified, the biosensor was used for Cu2+ calibration and was applied to the analysis of a real sample. For Cd2+ detection, two different peptides covalently attached to MPA were investigated, g-Glu-Cys-Gly (GSH) and His-Ser-Gln-Lys-Val-Phe, with the latter sensor exhibiting a lower Cd2+ detection limit, higher sensitivity and greater selectivity. Although the success of MPA as a peptide linker to the gold surface had been shown for the detection of Cu2+ and Cd2+, a more viable approach was necessary for the stable detection of a wider range of metal ions. A more stable self-assembled monolayer of thioctic acid (TA) was identified in which human angiotensin I was attached. This alternate modification procedure was superior to MPA-angiotensin I for Pb2+ detection in terms of stability and reusability with the drawback being sensitivity. The newly identified strategy was also applied to the determination of Ag+ using TA-methionine enkephalin modified electrodes. A sensor array for Cu2+ was also investigated as well as an extension to the simultaneous determination of multianalytes using four different modified electrodes. Combining a soft-modelling approach, the responses of Cu2+, Cd2+ and Pb2+ could be deconvoluted.
413

Reaction kinetics and mass transport in the electroless deposition of copper

Ninosky, Joseph M. 26 August 1998 (has links)
Graduation date: 1999
414

Synthesis and characterization of novel materials for electrochemical devices

Ramachandran, Kartik 08 August 1996 (has links)
Graduation date: 1997
415

Fabrication of graphitic carbon nanostructures and their electrochemical applications

Du, Rongbing 06 1900 (has links)
New methods to fabricate nanometer sized structures will be a major driving force in transforming nanoscience to nanotechnology. There are numerous examples of the incorporation of nanoscale structures or materials enhancing the functionality of a device. Graphitic carbon is a widely used material in electroanalysis due to a number of advantageous properties such as wide potential window, low cost, mechanical stability, and applicability to many common redox systems. In this thesis, the fabrication of nanometer sized graphitic carbon structures is described. These structures were fabricated by using a combination of electron-beam lithography (EBL) and pyrolysis. EBL allows for the precise control of shape, size and location of these carbon nanostructures. The structure and electrochemical reactivity of thin films of the pyrolyzed material is initially examined. The methodology to fabricate nanosized carbon structures and the structural and electrical characterization of the nanostructure is presented. The nanometer sized carbon structures fabricated in this work are being applied as nanoelectrodes. For nanoband structures, we observe a limiting current plateau which is characteristic of radial diffusion to cylindrical ultramicroelectrodes. Their voltammetric behaviour shows good agreement with classical theoretical predictions. Both carbon film and nanoband electrodes have been used as substrates for metal electrodeposition. The size and morphology of the deposited Au particles depends greatly on the substrate. On the nanoband electrodes, the Au particles exhibit a multi-branched or dendridic morphology. Their size and surface area are much larger than those electrodeposited on the carbon film electrode under the same conditions. The surface enhanced Raman spectroscopy (SERS) properties of the gold deposited on the nanobands was studied. A high enhancement in Raman intensity for a molecular layer on the nanoband supported gold is observed.
416

Hydrogen Bonding and Cucurbituril Complexation as Self-Assembly Mechanisms

Cui, Lu 01 July 2009 (has links)
The supramolecular interactions of small organic molecules with different host molecules are investigated in this dissertation. Additionally, the author also describes the self-assembly mechanisms in hydrogen bonding motif. These studies were carried out by many techniques including, NMR, cyclic voltammetry, steady state voltammetry, mass spectroscopy, UV-visible spectroscopy and fluorescence spectroscopy. Chapter 1 introduces the science of supramolecular chemistry and the background of cucurbiturils, one of the most important host molecules studied in this research work. It describes the structures and binding behaviors of each host molecule. Additionally, the selectivity and binding properties in the host-guest interactions involved cucurbiturils are discussed. Chapter 2 compares the electrochemical properties of cationic and neutral ferrocene derivatives upon addition of cucurbiturils. It is observed that the cationic ferrocene compounds bind to cucurbit[7]uril much stronger compared to the neutral ferrocene compounds. The positive charged side chains favor to interact with cucurbit[7]uril portals and thus stabilize the complexes. Besides, the author describes a simple analytical method to determine the binding constants by a competitive binding with a standard reference compound, cobaltocenium, which is reported to bind strongly to cucurbit[7]uril. Chapter 3 described the research of the pH-dependent binding affinity between cucurbit[7]uril and ferrocene guests. The electrochemical behavior of ferrocene moiety in aqueous solution was investigated by cyclic voltammetry in the presence of cucurbit[7]uril in acidic and basic environment respectively. The protonation and deprotonation processes affect the binding behaviors of the ferrocene residues with cucurbit[7]uril. Chapter 4 describes the synthesis and characterization of a new series of 4-phenyl-pyridinium derivatives. These compounds contain a phenyl-pyridinium residue which is favorable to be bound by cucurbit[8]uril. The 1:1 and 1:2 host-guest binding stoichiometries are both observed by UV-visible spectroscopy. These new compounds can be dimerized encapsulated inside the cucurbit[8]uril portals without being electrochemical reduced. Chapter 5 is a brief introduction into the science of hydrogen bonding. This chapter investigates the application of multiple hydrogen-bonding in supramolecular chemistry extensively. Multiple hydrogen bonds with their directionality and reversibility are of great interest and importance in the design and investigations of well-defined supramolecular assemblies. The potential of hydrogen bonding is limitless and is still developing. Chapter 6 describes the synthesis and photochemical behaviors of a series of ureido-pyrimidione derivatives. All of the DDAA derivatives form stable, non-covalent dimers in non-polar solvents. The dimeric molecular assemblies of these hydrogen bonding motifs in their DDAA pyrimidinedione units are investigated by NMR, X-ray crystallography, fluorescence spectroscopy and computations. Additionally, their hetero-dimerization is well studied by fluorescence spectroscopy. The observation and comparison of fluorescence quenching on the photochemical fluorophore for each compound by ferrocene-DDAA and isopropyl-DDAA reveal the electron transfer process through the quadruple hydrogen bonding motifs.
417

Synthesis and electrochemical characterization of highly monodisperse dendrimer-templated monolayer protected clusters

Kim, Yong-Gu 12 April 2006 (has links)
We described the synthesis of multilayer organic thin films prepared by sequential vapor-phase coupling of monomers. The reactions were carried out at room temperature and atmospheric pressure. Films prepared using up to six sequential coupling reactions are reported. Homobifunctionalized monomers, such as hexamethylenediamine, react primarily via a single endgroup rather than cross coupling to the reactive surface via both reactive groups. We synthesized bifunctionalized polyamidoamine (PAMAM) dendrimers having both quaternary ammonium groups and primary amines on their periphery were prepared. The high positive charge on the surface of these dendrimers prevents agglomeration, and the unquanternized amine groups provide a reactive handle for immobilizing the dendrimer-encapsulated nanoparticles onto surfaces. We prepared highly monodisperse, 1-2 nm diameter Au nanoparticles using bifunctionalized PAMAM dendrimers as templates. The synthesis is carried out in water, takes less than 30 min, and requires no subsequent purification. The high monodispersity is a function of the template synthesis, which avoids size variations arising from random nucleation and growth phenomena, and the use of magic number equivalent ratios of AuCl4-/dendrimer. We investigated the electrochemical properties of Au, Pd and PdAu monolayer-protected clusters (MPCs), prepared by dendrimer-templating and subsequent extraction, are described. Purification of the extracted Au, Pd and PdAu nanoparticles was not required to obtain well-defined differential pulse voltammetry peaks arising from quantized double-layer charging. The calculated sizes of the nanoparticles were essentially identical to those determined from the electrochemical data. The capacitance of the particles was independent of the composition of core metal.
418

Development of new tools to study drug-lipid interactions and their application to investigating amphotericin b's association with model cell membranes

Stoodley, Robin 05 1900 (has links)
The interaction of different formulations of the antifungal drug amphotericin B (AmB) with model cell membranes was studied and new techniques of measuring this interaction using electrochemical and/or spectroscopic methods were developed. Two model cell membrane systems were used: sterol-free lipid monolayers adsorbed to a Hg electrode and sterol-free or sterol-containing floating lipid monolayers on a Langmuir trough. Electrochemical control over the adsorbed monolayer allowed the defectiveness of the layer to be varied and the interaction of AmB with both well-ordered and defective monolayers characterized. Measurements of monolayer capacitance and permeability were used to indicate the nature of the interaction. Capacitance provides a measure of the lipid organization, while permeability was measured via electro reduction of thallium (I)cation. The three AmB formulations and two control samples were examined and showed different interaction behaviour. The disruption of lipid order and permeabilization induced by the two commercial formulations correlated generally with in vivo studies of their toxicity. An experimental and possibly less toxic AmB formulation made monolayer significantly more permeable. In situ fluorescence microscopy of the monolayer on Hg was carried out after introducing a low concentration of fluorophore into the layer. Fluorescence intensity as a function of electrode potential was measured and was used to characterize the lipid on Hg model membrane system before we attempted to measure AmB's influence on the fluorescence. The fluorescence excitation and emission spectra of AmB itself were measured ex situ for two of the formulations. Using added surfactant to control AmB aggregation state, the relationship between AmB aggregation and its fluorescence properties was examined. We discovered AmB to have unusual dual fluorescence properties, the extent of which differed between formulations. We measured AmB's fluorescence in situ as the drug interacted with floating lipid monolayers on the Langmuir trough. Both the variation in fluorescence during compression of a mixed AmB/lipid monolayer and penetration of AmB into a phospholipid monolayer were measured. This experimental setup was configured to collect fluorescence only from AmB at the monolayer, and not from AmB in bulk solution. Fluorescence excitation was made using a laser diode extracted from a consumer electronics device.
419

Synthesis and Characterization of Metal Nanoclusters Stabilized by Dithiolates

Robinson, Donald A, III 19 July 2011 (has links)
Rapidly expanding research in nanotechnology has led to exciting progress in a versatile array of applications from medical diagnostics to photocatalytic fuel cells. Such success is due to the ability of researchers to manipulate the desired properties of nanomaterials by controlling their size, shape, and composition. Among the most thriving areas of nanoparticle research has been the synthesis and characterization of stable metallic nanoclusters capped by thiolate ligands. Our group has extended this research to study copper, silver, and gold clusters with remarkable stability and energetics, which was achieved by using dithiolates as the ligand stabilizers. In addition to the enhanced stability offered by the chelate effect, the use of dithiolate ligands instead of monothiolates is proposed to provide an alternate interfacial bond structure that is shown to strongly influence energetic properties of nanoclusters, with strong evidence of metal-ligand charge transfer. Energetic properties were characterized by spectroscopic and electrochemical methods.
420

Peptide monolayers : an electrochemical study

Orlowski, Grzegorz Artur 05 September 2007
Understanding electron-transfer (ET) processes in proteins is of fundamental importance. In a series of photophysical studies of well-behaved peptide model systems, it has become evident that the ET through peptide spacers is greatly influenced by the separation between the acceptor (A) and the donor (D), the nature of the peptide backbone, the amino acid sequence, and the resulting flexibility of the peptide conjugates. In particular, it was suggested in the literature that the presence of H-bonding will increase the rate of ET, and there is experimental evidence, mostly in proteins, to suggest that H-bonding indeed increases the rate of ET.<p>My aim was to develop a potential-assisted deposition method for ferrocene peptide disulfides onto gold surfaces and investigate the electrochemical properties of these films. We made use of two classes of Fc-peptides: acylic ferrocenoyl (Fc)-peptide disulfides and cyclo-1,1-Fc-peptide disulfides, allowing the preparation of tightly packed films of cyclic and acylic Fc-peptides on gold surfaces within 30 minutes. This is a significant benefit compared to the conventional soaking method of self-assembly requiring several days for the assembly of well-packed films. Such films exhibited considerably improved stability. This electrodeposition method should find wide-spread applications for the formation of tightly-packed films from disulfides. Our studies allowed a direct comparison of the electron transfer kinetics of cyclic and acyclic Fc-peptide disulfide systems. Our results showed faster ET kinetics for films prepared from cyclic Fc-peptide conjugates compared to the acyclic systems, presumably as a result of the enhanced rigidity of the Fc-peptide conjugates on the surface and/or an increase of the number of conductive peptide wires to the surface. Following the idea of peptide dynamics as a major contributor to the observed electron transfer rate in peptides and peptide conjugates, variable temperature electrochemical studies of Fc-peptide films were performed. An estimation of the reorganization energy associated with ferrocene/ferrocenium (Fc/Fc+) redox process allowed us to probe the role of peptide dynamics. Three counter-ions were tested, exhibiting different strengths of association with the Fc+ group (BF4- < ClO4- < PF6-) and the reorganization energies were evaluated in each case. The highest reorganization energy was obtained for the weakly interacting anion BF4-. Weakly interacting anions also showed significant broadness in the redox peaks and emergence of the second oxidation peak which is attributed to phase separation of the ferrocene group. Ferrocene agglomeration was not observed for any of the cyclic Fc-peptide conjugates but occurred for some of the acyclic systems. In particular, for acyclic Val and Leu containing Fc-peptide conjugates agglomeration were observed and was presumably caused by lateral interactions between the hydrophobic side-groups of the peptides. Further experiments involving the interaction of Fc-peptide films with alkali metal ions gave additional evidence that electron transfer is influenced significantly by peptide dynamics.

Page generated in 0.05 seconds