• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 5
  • 5
  • 4
  • Tagged with
  • 36
  • 36
  • 12
  • 11
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Materiály pro superkondenzátory / Materials for Supercapacitors

Dvořák, Petr January 2014 (has links)
This dissertation deals with the electrode materials, liquid and gel electrolytes suitable for supercapacitors. In the field of electrode materials were investigated carbon materials based on carbon blacks, expanded and micronized graphite suitable for supercapacitors working on the principle electrochemical double layer. Another area which this thesis deals with are aprotic liquid electrolytes prepared from suitable types of salts and aprotic solvents. The last part is focused on the preparation and subsequent electrochemical characterization of gel polymer electrolytes in order to increase the ionic conductivity of these electrolytes.
12

Elektrochemická oxidace žlučových kyselin na elektrodách na bázi uhlíku. Možnosti využití v elektroanalýze. / Electrochemical oxidation of Bile Acids on Carbon Based Electrodes. The Possible Use in Electroanalysis.

Klouda, Jan January 2015 (has links)
The goal of this master's thesis was to examine the possibility of oxidation of seven selected bile acids and evaluate whether such processes are suitable for analytical purposes. The secondary goal was to describe the oxidation products of bile acid electrolysis. The experiments were carried out in a non-aqueous medium of acetonitrile and in a mixed medium of acetonitrile:water using linear sweep and cyclic voltammetry. The working electrode materials employed for voltammetric experiments were: highly oriented pyrolytic graphite, -cyclodextrin modified glassy carbon and boron doped diamond. Preparative electrolysis was carried out on a platinum electrode in the non-aqueous medium of acetonitrile. Experiments have shown that neither the highly oriented pyrolytic graphite electrode nor the -cyclodextrin modified glassy carbon electrode are suitable for analytical purposes under conditions used. The results achieved on the boron doped diamond electrode, on the other hand, have not yet been described in the literature. Primary bile acids cholic and chenodeoxycholic were oxidized at approximately 0.5 V lower potential in the mixed medium of acetonitrile:water than in the papers using carbon electrodes published until now. Products of oxidation on the platinum electrode were separated by TLC and...
13

Conducting redox polymers for battery applications

Svensson, Mikael January 2020 (has links)
The near future will put a lot of demand on the increasing need for energy production and storage. Issues regarding the modern-day battery technology’s environmental benignity, safety and cost to sustain such demands thus serve as a huge bottleneck, necessitating the research into alternative electrochemical energy storage solutions. Conducting redox polymers are a class of materials which combines the concepts of conducting polymers and redox active molecules to work as fully organic electrode materials. In this work three conducting redox polymers based on 3,4-ethylenedioxythiopene and 3,4-propylenedioxythiopene (EPE) with hydroquinone, catechol and quinizarin pendant groups were investigated. The polymers were electrochemically characterized with regards to their ability to cycle protons (aqueous electrolyte) and cations (non-aqueous electrolyte), their kinetics and charge transport and as cathodes in a battery. In non-aqueous electrolyte, hydroquinone and catechol did not exhibit redox activity in a potential region where the backbone was conducting as they were not redoxmatched. Quinizarin showed redox-matching as concluded by in situ conductance and UV-vis measurements when cycling Na+, Li+, Ca2+ and Mg2+-ions in acetonitrile. Comparison of the kinetics revealed that the rate constant for Ca2+-ion cycling was several magnitudes larger than the rest, and galvanostatic charge/discharge showed that 90% of the polymer capacity was attainable at 5C. An EPE-Quinizarin cathode and metallic calcium anode coin cell assembly displayed output voltages of 2.4 V, and the presented material thus shows promising and exciting properties for future sustainable battery chemistries.
14

Modeling and Experimental Investigation of Regenerating the Mixed Cathode Active Materials of Spent Lithium-Ion Batteries

Al-Shammari, Hammad 16 July 2021 (has links)
No description available.
15

Design Guidelines for Organic Electrode Materials in Advanced Energy Storage Systems

Tuttle, Madison R. 12 September 2022 (has links)
No description available.
16

Sodium Secondary Batteries Utilizing Multi-Layered Electrolytes Composed of Ionic Liquid and Beta-Alumina / イオン液体とベータアルミナからなる多層電解質を用いたナトリウム二次電池

Wang, Di 25 September 2023 (has links)
京都大学 / 新制・課程博士 / 博士(エネルギー科学) / 甲第24925号 / エネ博第467号 / 新制||エネ||87(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻 / (主査)教授 萩原 理加, 教授 佐川 尚, 教授 野平 俊之 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DFAM
17

Chemo-mechanics of alloy-based electrode materials for Li-ion batteries

Gao, Yifan 20 September 2013 (has links)
Lithium alloys with metallic or semi-metallic elements are attractive candidate materials for the next-generation rechargeable Li-ion battery anodes, thanks to their large specific and volumetric capacities. The key challenge, however, has been the large volume changes, and the associated stress buildup and failure during cycling. The chemo-mechanics of alloy-based electrode materials entail interactions among diffusion, chemical reactions, plastic flow, and material property evolutions. In this study, a continuum theory of two-way coupling between diffusion and deformation is formulated and numerically implemented. Analyses based on this framework reveal three major conclusions. First, the stress-to-diffusion coupling in Li/Si is much stronger than what has been known in other electrode materials. Practically, since the beneficial effect of stress-enhanced diffusion is more pronounced at intermediate or higher concentrations, lower charging rates should be used during the initial stages of charging. Second, when plastic deformation and lithiation-induced softening take place, the effect of stress-enhanced diffusion is neutralized. Because the mechanical driving forces tend to retard diffusion when constraints are strong, even in terms of operational charging rate alone, Li/Si nano-particles are superior to Li/Si thin films or bulk materials. Third, the diffusion of the host atoms can lead to significant stress relaxation even when the stress levels are below the yield threshold of the material, a beneficial effect that can be leveraged to reduce stresses because the host diffusivity in Li/Si can be non-negligible at higher Li concentrations. A theory of coupled chemo-mechanical fracture driving forces is formulated in order to capture the effect of deformation-diffusion coupling and lithiation-induced softening on fracture. It is shown that under tensile loading, Li accumulates in front of crack tips, leading to an anti-shielding effect on the energy release rate. For a pre-cracked Li/Si thin-film electrode, it is found that the driving force for fracture is significantly lower when the electrode is operated at higher Li concentrations -- a result of more effective stress relaxation via global yielding. The results indicate that operation at higher concentrations is an effective means to minimize failure of thin-film Li/Si alloy electrodes.
18

Nouveaux matériaux pour les supercondensateurs : développement et caractérisation / New materials for supercapacitors : development and characterization

Dabonot, Aurore 29 September 2014 (has links)
Ces travaux de thèse portent sur l'étude de matériaux d'électrodes de supercondensateurs. Ce sont des dispositifs de stockage qui possèdent une densité de puissance importante de l'ordre de plusieurs kW/kg. Des systèmes asymétriques ont été développés dans le but d'augmenter la densité d'énergie de ces dispositifs, tout en essayant de maintenir une densité de puissance élevée. Ils font intervenir une électrode capacitive classique de carbone activé et une électrode faradique. Concernant cette électrode non-bloquante, deux orientations ont été abordées : • Principalement, l'utilisation de titanate de lithium Li4Ti5O12 qui est un matériau d'insertion du lithium habituellement utilisé dans les électrodes de batteries Li-ion. Il est apparu que pour les systèmes hybrides comportant une électrode négative composée uniquement de Li4Ti5O12, la densité d'énergie chute fortement au-delà de 1 kW/kg. L'utilisation d'électrodes négatives composites carbone activé + Li4Ti5O12 est donc préconisée pour maintenir de bonnes performances à la fois en énergie et en puissance. Ainsi, pour une densité de puissance de 2 kW/kg, la densité d'énergie du système hybride développé est encore 1,5 fois supérieure à celle d'un système symétrique carbone activé / carbone activé testé dans les mêmes conditions. • En second plan, l'utilisation du dioxyde de manganèse MnO2, matériau pseudo-capacitif qui fait intervenir des réactions redox. L'étude a porté sur la synthèse de l'oxyde métallique puis sur celle d'un matériau composite réalisé par auto-assemblage. Le but est d'agréger de fines particules de dioxyde de manganèse autour d'un squelette carboné. Une telle microstructure présente l'avantage d'offrir une grande surface spécifique de matière active directement en contact avec un réseau possédant une bonne conductivité électronique. Le matériau composite MnO2 + VGCF obtenu a été testé en électrode positive dans un système asymétrique face à une électrode négative de carbone activé. Cela a permis de multiplier par 1,5 l'étendue de la fenêtre de stabilité de l'électrolyte aqueux par rapport à un système carbone activé / carbone activé. Enfin, dans une optique exploratoire, l'utilisation du diamant en tant que matériau d'électrode de supercondensateur a été étudiée puisqu'il présente dans l'eau une fenêtre de stabilité électrochimique importante d'environ 3 V. L'intérêt de synthétiser des structures tridimensionnelles a été mis en évidence, en particulier une architecture de diamant « en aiguilles » permet de multiplier par 10 la capacité surfacique par rapport à une architecture plane. / This work deals with the study of electrode materials for supercapacitors. These storage devices have a significant power density of several kW/kg. Asymmetric systems have been developed in order to increase the energy density of these components while trying to maintain a high power density. They consist of a classic capacitive electrode made of activated carbon and a faradaic electrode. Two approaches have been broached regarding that non-blocking electrode: • Mainly, the use of lithium titanate Li4Ti5O12 which is a lithium insertion material usually used in Li-ion battery electrodes. It appeared that for hybrid systems including a negative electrode only made of Li4Ti5O12, the energy density is greatly reduced beyond 1 kW/kg. The use of composite negative electrodes made of activated carbon and Li4Ti5O12 is recommended so as to maintain good performances both in energy and power. Thus, for a power density of 2 kW/kg, the energy density of the developed hybrid system remains 1.5 superior to the one of an activated carbon / activated carbon symmetric system tested in the same conditions. • Secondly, the use of manganese dioxide MnO2, a pseudo-capacitive material involving redox reactions. The study has been focused on the synthesis of the metal oxide and then on the synthesis of a composite material by self-assembly. The aim is to aggregate small manganese dioxide particles around a carbon backbone. Such a microstructure offers a high specific surface area of active material directly in contact with a network having a good electronic conductivity. The obtained MnO2 + VGCF composite material has been tested as positive electrode in an asymmetric system, facing an activated carbon electrode. Thus, the stability window of the aqueous electrolyte has been multiplied by 1.5 compared to an activated carbon / activated carbon system. Finally, diamond has been considered as a supercapacitor electrode material in an explorative view since it offers a wide electrochemical stability window in water (around 3 V). The interest for tridimensional structures has been evidenced, e.g. a “needles” architecture allows to obtain a surfacic capacity ten times higher than the one obtained with a flat architecture.
19

Anodically fabricated TiO2–SnO2 nanotubes and their application in lithium ion batteries

Madian, M., Klose, M., Jaumann, Tony, Gebert, Annett, Oswald, S., Ismail, N., Eychmüller, Alexander, Eckert, Jürgen, Giebeler, L. 17 July 2017 (has links)
Developing novel electrode materials is a substantial issue to improve the performance of lithium ion batteries. In the present study, single phase Ti–Sn alloys with different Sn contents of 1 to 10 at% were used to fabricate Ti–Sn–O nanotubes via a straight-forward anodic oxidation step in an ethylene glycol-based solution containing NH4F. Various characterization tools such as SEM, EDXS, TEM, XPS and Raman spectroscopy were used to characterize the grown nanotube films. Our results reveal the successful formation of mixed TiO2/SnO2 nanotubes in the applied voltage range of 10–40 V. The as-formed nanotubes are amorphous and their dimensions are precisely controlled by tuning the formation voltage which turns Ti–Sn–O nanotubes into highly attractive materials for various applications. As an example, the Ti–Sn–O nanotubes offer promising properties as anode materials in lithium ion batteries. The electrochemical performance of the grown nanotubes was evaluated against a Li/Li+ electrode at a current density of 504 μA cm−2. The results demonstrate that TiO2/SnO2 nanotubes prepared at 40 V on a TiSn1 alloy substrate display an average 1.4 fold increase in areal capacity with excellent cycling stability over more than 400 cycles compared to the pure TiO2 nanotubes fabricated and tested under identical conditions. This electrode was tested at current densities of 50, 100, 252, 504 and 1008 μA cm−2 exhibiting average capacities of 780, 660, 490, and 405 μA cm−2 (i.e. 410, 345, 305 and 212 mA h g−1), respectively. The remarkably improved electrochemical performance is attributed to enhanced lithium ion diffusion which originates from the presence of SnO2 nanotubes and the high surface area of the mixed oxide tubes. The TiO2/SnO2 electrodes retain their original tubular structure after electrochemical cycling with only slight changes in their morphology.
20

Materiál elektrod pro elektroerozivní obrábění / Material of electrodes for electrical discharge machining

Bednář, Šimon January 2018 (has links)
Diplomová práce se zabývá problematikou volby grafitového materiálu využívaného pro výrobu nástrojových elektrod při elektroerozivní obrábění. Práce je rozdělena do třech částí. Teoretická rešerše nekonvenční technologie elektroerozivního obrábění vypracovaná dle uvedených zdrojů se nachází v první části práce. Dále je v práci proveden cenový průzkum EDM grafitových materiálů nabízených v České republice a na Slovensku. Čtyři odlišné stupně kvality grafitu (od stávajícího dodavatele firmy GAMARTIS TRADE s.r.o.) a jeden měděný materiál byly podrobeny experimentu, jehož účelem bylo zjištění závislosti mezi kvalitou grafitového materiálu (cena) a přesností vyhloubené kavity, opotřebením nástrojové elektrody, časem obrábění nebo také drsností povrchu.

Page generated in 0.0901 seconds