Spelling suggestions: "subject:"électrodynamique quantique"" "subject:"electrodynamique quantique""
1 |
Mesure de la biréfringence magnétique du vide : deuxième version de l'expérience / Vaccum magnetic birefringence : BMV.II the second version of the experimentRivère, Alice 06 July 2017 (has links)
La biréfringence magnétique linéaire correspond à une différence d'indice induite dans un milieu par un champ magnétique transverse. Dans les gaz, cet effet est aussi connu sous le nom d'effet Cotton-Mouton. En 1935, la théorie de l'électrodynamique quantique prévoit une telle biréfringence magnétique linéaire dans un milieu particulier, le vide. La biréfringence attendue est de l'ordre de 10-24 pour un champ magnétique appliqué de 1 T. Malgré plusieurs tentatives, l'observation de cette prédiction de l'électrodynamique quantique n'a encore jamais été réalisée et reste un défi expérimental. Les travaux réalisés durant cette thèse sont dédiés à l'observation et à la mesure de l'effet Cotton-Mouton dont le but ultime est la mesure de l'effet Cotton-Mouton du vide. Les mesures de biréfringence magnétique sont difficiles car il s'agit de détecter de très petites variations de la polarisation de la lumière combinant optique de précision et champ magnétique. L'expérience est réalisée au Laboratoire National des Champs Magnétiques Intenses de Toulouse afin d'associer l'utilisation de champs magnétiques intenses en régime pulsé et d'une cavité optique de type Fabry-Perot de très haute finesse sur laquelle est asservi un laser Nd :YAG. Ce manuscrit présente les résultats des mesures de biréfringences magnétiques dans le xénon gazeux et une limite dans le vide obtenus avec la première version de l'expérience au commencement de cette thèse. La nouvelle version de l'expérience BMV.II est au cœur de cette thèse, de sa construction aux résultats expérimentaux. Les principaux éléments y sont décrits, à savoir les enceintes à vide, la bobine produisant un champ magnétique plus intense, le système d'asservissement. Les améliorations vis à vis de la première version de l'expérience concernant la sensibilité de l'expérience, y seront également présentées. / Linear magnetic birefringence corresponds to an anisotropy of the index of refraction induced in a medium by an applied external magnetic field. In gas, this effect is often referred to as the Cotton-Mouton effect. The development of the quantum electrodynamic (QED) theoretical framework led to the prediction of vacuum magnetic-birefringence (VMB) (or Cotton-Mouton effect in vacuum (CMV)), with an expected magnitude of 10-24 per Tesla of magnetic field. While several experiments seek to measure this fundamental QED prediction, the direct measurement of VMB remains elusive. This thesis work focuses the enhancement of Birefringence Magnetique du Vide (BMV), an apparatus designed for the measurement of VMB. The main challenge in the measurement of VMB lies in the extremely small magnitude of the effect, resulting in the marriage of techniques in high magnetic fields and precision interferometry. BMV is housed in the Laboratoire National des Champs Magnétique Intense (LNCMI) in Toulouse, making use of the facility's high pulsed magnetic fields. The experiment uses a Fabry-Perot optical resonator to store the probing laser field, enhancing the measurable effect. Presented in this thesis are the results of magnetic birefringence measurements in xenon gas as well as limits of the vacuum effect obtained in the first iteration of the experiment, BMV I. Additionally, we focus on the development of the second generation experiment, BMV II, from setup through early experimental results showing great improvements in sensitivity since the first version of the experiment. The key parameters of this experimental setup demonstrated here are the vacuum system, the pulsed magnetic field coils, and the optical setup.
|
2 |
Etude expérimentale de l'effet laser dans des microsphères de silice dopées avec des ions neodymeTreussart, François 12 December 1997 (has links) (PDF)
Ce travail de thèse porte sur la mise en évidence de l'effet laser dans des microrésonateurs optiques de très haute surtension, basés sur les modes de galerie de microsphères de silice d'un diamètre de 50 à 100 μm. Ces modes résonnants correspondent à une propagation guidée par réflexion totale interne. La lumière est ainsi confinée dans un anneau équatorial dont les dimensions transversales sont de l'ordre de la longueur d'onde, ce qui donne lieu à une forte exaltation du champ lumineux. Les pertes de ces modes guidés sont extrêmement faibles. Ils offrent donc la combinaison remarquable d'une très forte localisation du champ dans un tout petit volume et de très longs temps de vie pour les photons. Ces propriétés en font des résonateurs de choix tant pour obtenir des effets d'Optique non-linéaire à très bas seuil que pour des expériences d'Électrodynamique Quantique en cavité. Ce mémoire présente d'abord les propriétés de ces résonances et leur observation expérimentale par spectroscopie laser. Le dédoublement de ces résonances par rétrodiffusion interne est ensuite décrit et interprété par un modèle d'oscillateurs couplés, en bon accord avec les expériences. La réalisation d'un microlaser avec des microbilles dopées au néodyme est ensuite présentée. Les très bas seuils observés (200 nW) correspondent bien aux prédictions théoriques obtenues par un modèle semi-classique approprié. Pour renforcer les effets de cavité, ces expériences ont été poursuivies en immergeant les microsphères dans l'hélium superfluide. Le montage cryogénique mis au point nous permet de conserver des surtensions à 2 K de 10^9 et l'émission laser a pu être observée, ouvrant la voie à la recherche d'un fonctionnement laser avec seulement quelques ions couplés à quelques photons.
|
3 |
Étude du régime de Purcell pour une boîte quantique unique dans une microcavité semiconductrice. Vers une non-linéarité optique géante.Munsch, Mathieu 15 December 2009 (has links) (PDF)
L'électrodynamique quantique en cavité (EDQC) étudie l'interaction matière rayonnement à son niveau le plus fondamental, ie lorque la matière est bien décrite par un système à deux niveaux, et la lumière par un mode unique du champ électromagnétique. Les premiers eets d'EDQC ont été observés dans le début des années 80 pour des systèmes de physique atomique. Avec le développement des techniques de micro et nano-fabrication, l'eet Purcell, puis le couplage fort, ont également pu être observés pour des atomes articiels couplés à des cavités semiconductrices. Ces systèmes présentent les avantages d'être potentiellement intégrables sur un circuit et réalisables à grande échelle. Dans ce contexte, les boîtes quantiques semiconductrices (BQ) sont des candidats particulièrement prometteurs. Cependant, à cause de la présence d'une matrice environnante, source intrinsèque de décohérence, ces systèmes s'écartent du paradigme de la physique atomique. Dans le cas des BQs en particulier, ce couplage peut être important et modier les observations de manière singulière. On se propose ici d'étudier la mesure du facteur de Purcell, qui est un des facteurs de mé- rite de l'EDQC, pour une BQ dans une cavité de type micropilier. Diérentes approches seront présentées et comparées entre elles, qui tiennent compte de la spécicité des BQ, et montrent que l'utilisation d'un modèle plus n est nécessaire pour interpréter les résultats obtenus. En- n, le dernier chapitre est consacré à une application intéressante de ce type de système, qui consiste à utiliser la saturation de la boîte quantique pour réaliser une non-linéarité optique à l'échelle du photon unique.
|
4 |
Cavity quantum electrodynamics with a single spin : coherent spin-photon coupling and ultra-sensitive detector for condensed matter / Électrodynamique quantique en cavité avec un spin unique : couplage cohérent et détecteur ultra-sensible pour la matière condenséeDartiailh, Matthieu 28 November 2017 (has links)
Ce travail de thèse est centré autour de deux aspects des technologies quantiques: le calcul quantique et la mesure quantique. Il s'appuie sur la boîte à outils de la lumière micro-onde, développé en électrodynamique quantique, pour sonder des circuits mésoscopiques. Ces circuits, fabriqués ici à base de nanotubes de carbone, peuvent être conçus comme des bits quantiques ou comme des systèmes modèles de la matière condensée, et cette thèse explore les deux aspects. La réalisation d'une interface spin-photon cohérente illustre le premier. L'expérience repose sur l'utilisation de contacts ferro-magnétiques pour induire un couplage spin-orbit artificiel dans une double boîte quantique. Ce couplage hybride les degrés de liberté de charge et de spin de l'électron. En incluant ce circuit dans une cavité micro-onde, dont le champ électrique peut être couplé à la charge, nous réalisons une interface spin-photon. Un second projet est centré sur l'utilisation de boîtes quantiques comme systèmes modèles. Ce projet consiste à coupler, via une cavité micro-onde, un qubit supraconducteur, qui servira de sonde peu invasive, et une boîte quantique unique. Un tel circuit peut exhiber différent comportement dont l'effet Kondo, qui est un effet à N-corps. Dans ce travail, nous présentons à la fois une étude théorique, et des travaux expérimentaux. Finalement, un travail en collaboration, sur une proposition théorique pour détecter le caractère auto-adjoint des fermions de Majorana en utilisant une cavité micro-onde, est présenté. / This thesis work is centered around two key aspects of quantum technologies: quantum information processing and quantum sensing. It builds up onto the microwave light toolbox, developed in circuit quantum electrodynamics, to investigate the properties of mesosocopic circuits. Those circuits, made out here of carbon nanotubes, can be designed to act as quantum bits of information or as condensed matter model system and this thesis explore both aspects. The realization of a coherent spin-photon interface illustrates the first one. The experiment relies on ferromagnetic contacts to engineer an artificial spin-orbit coupling in a double quantum dot. This coupling hybridizes the spin and the charge degree of freedom of the electron in this circuit. By embedding this circuit into a microwave cavity, whose electrical field can be coupled to the charge, we realize an artificial spin-photon interface. A second project, started during this thesis, focuses on using quantum dot circuits as model systems. This project consists in coupling, via a microwave cavity, a superconducting qubit, that will serve as a delicate probe, and single quantum dot circuit. Such a circuit can display several behaviors including the Kondo effect which is intrinsically a many-body effect. In this work, we present both a theoretical study of some possible outcomes of this experiment, and experimental developments. Finally, a theoretical proposition to detect the self-adjoint character of Majorana fermions using a microwave cavity, is presented.
|
5 |
Mesures de biréfringences magnétiques dans l'hélium et le xénon gazeux, et dans le vide / Magnetic birefrigences measurements in helium and xenon gases, and in vacuumCadène, Agathe 02 July 2015 (has links)
Cette thèse présente les résultats obtenus au sein du projet BMV (Biréfringence Magnétique du Vide), dont l'objectif principal est la mesure de la biréfringence magnétique linéaire du vide. Cet effet est prédit dans le cadre de l'électrodynamique quantique mais n'a jamais été observé expérimentalement. La biréfringence attendue est de l'ordre de 10-24 pour un champ magnétique appliqué de 1 T. Sa mesure constitue donc un véritable défi expérimental. Dans un premier temps, le dispositif expérimental permettant la mesure de biréfringences magnétiques par polarimétrie est décrit. Puis les résultats concernant les mesures des biréfringences magnétiques circulaire (effet Faraday) et linéaire (effet Cotton-Mouton) de l'hélium et du xénon gazeux sont exposés. Enfin, une valeur de la biréfringence magnétique linéaire du vide est donnée. / In this work, we present the results obtained by the BMV (Biréfringence Magnétique du Vide) project, whose goal is to measure the linear magnetic birefringence of vacuum. This effect is predicted in the framework of quantum electrodynamics but it has never been observed experimentally. The expected birefringence is as small as 10-24, for an applied magnetic field of 1 T. Thus its measurement is an experimental challenge. First, we describe the experimental setup which allows magnetic birefringences measurements using a polarimetry method. Then, we present the results concerning the measurements of the circular magnetic birefringence (Faraday effect) and the linear magnetic birefringence (Cotton-Mouton effect) of helium and xenon gases. Finally we give a value for the linear magnetic birefringence of vacuum.
|
6 |
Spectroscopie haute précision de la transition 1S-3S de l'atome d'hydrogène en vue d'une détermination du rayon du proton / High precision spectroscopy of the 1S-3S transition of hydrogen to determine the proton radiusGaltier, Sandrine 22 September 2014 (has links)
La précision des calculs théoriques d'électrodynamique quantique dans l'atome d'hydrogène est actuellement limitée par la constante de Rydberg et la distribution de charge du proton. La comparaison entre ces calculs et les mesures expérimentales de deux fréquences de transition dans l'hydrogène permet d'extraire ces deux constantes. La mesure de la transition 1S-2S est la plus précise à ce jour avec une incertitude relative de 10-15. L'objectif de mon travail de recherche est d'améliorer la précision de mesure de la fréquence de la transition 1S-3S, pouvant être utilisée comme la deuxième mesure nécessaire.La transition 1S-3S est sondée par une excitation à deux photons à 205 nm, permettant de s'affranchir de l'effet Doppler du 1er ordre. Ce faisceau UV est produit par somme de fréquence dans un cristal non linéaire. L'onde lumineuse délivrée par un laser Titane-saphir à 894 nm est sommée avec un faisceau à 266 nm produit par doublage d'un laser Nd-YO4. Cette somme de fréquence délivre un faisceau continu à 205 nm d'une puissance de 15 mWLa distribution de vitesse du jet atomique, dont la connaissance est indispensable pour évaluer l'effet Doppler du 2ème ordre, est déterminée grâce à l'effet Stark motionnel où l'action d'un champ magnétique produit un décalage en fréquence quadratique en vitesse.Les fréquences des deux lasers sources sont mesurées à l'aide un peigne de fréquence optique.La fréquence de la transition 1S-3S est finalement déterminée avec une incertitude relative de 10-12. Sa valeur conduit à une valeur préliminaire du rayon du proton qui serait en contradiction avec celle préconisée par le CODATA. / The uncertainty of the Quantum Electrodynamics calculations for hydrogen atom is currently limited by the knowledge of the Rydberg constant and the proton charge radius. Those two quantities can be extracted from the comparison between the theoretical predictions and two different frequency measurements on hydrogen.The 1S-2S transition frequency is one measured with the highest resolution with a relative uncertainty of 10-15. The aim of this thesis is to improve the determination of the 1S-3S transition, which can be used as the second precise measurement. The 1S-3S two-photon transition is excited at 205 nm. This UV light beam is generated by frequency mixing in a non-linear crystal. An 894 nm light delivered by a Ti:Sa laser is mixed with a 266 nm light beam generated by a quadrupled Nd:YVO4 laser. A reliable 15 mW continuous radiation at 205 nm is then produced. The frequencies of both lasers are measured simultaneously using an optical frequency comb referenced to a cesium clock. To evaluate the second-order Doppler effect, the velocity distribution of the atomic beam is determined thanks to a motional Stark effect. This effect is realized with a static magnetic field which induces a velocity-dependent quadratic frequency shift. Finally, the frequency of the 1S-3S transition is determined with a relative uncertainty of 10-12 which is accurate enough to contribute to the “proton size puzzle”. However, depending on the velocity distribution used in the analysis, the obtained value agrees or not with the present recommended CODATA value.
|
7 |
Cavity quantum electrodynamics and intersubband polaritonics of a two dimensional electron gasDe Liberato, Simone 24 June 2009 (has links) (PDF)
L'électrodynamique quantique en cavité, c'est-à-dire l'étude du couplage lumière-matière en géométries confinées, a permis d'observer, grâce à des cavités de plus en plus performantes, le régime de couplage fort lumière-matière.<br />Dans ce régime, le temps de vie d'un photon est plus long que le temps caractéristique de l'interaction avec la matière ; un seul photon subit donc plusieurs cycles d'absorption et de réémission avant de s'échapper de la cavité.<br />Les premières expériences dans ce régime, effectuées avec des atomes dans des cavités supraconductrices, ont été suivies par des réalisations en matière condensée, utilisant des excitons dans des microcavités planaires, des boites de Cooper couplées à des résonateurs unidimensionnels ou bien des transitions intersousbandes dans des puits quantiques dopés, couplées à un mode de microcavité. Le couplage fort dans ce dernier système donne naissance à des excitations mixtes, moitié lumière et moitié matière, nommées polaritons intersousbandes.<br />Ma thèse s'attache à plusieurs aspects de la physique de ces excitations, qui se caractérisent par la force extrême du couplage, qui a poussé les chercheurs à introduire le terme couplage ultra-fort.<br /><br />Dans la première partie de ma thèse, après avoir donné un aperçu général des différents concepts théoriques engagés, j'étudie les conséquences de ce couplage ultra-fort en présence d'une modulation externe appliquée au système. Je montre, en utilisant une théorie de Langevin quantique, qu'une radiation peut être émise à partir du vide, effet qui rappelle de près l'effet Casimir dynamique. L'intensité de cette radiation est assez forte pour pouvoir être mesurée et je reporte ici les résultats de deux expériences préliminaires menées en vue de l'observation d'un tel effet, auxquelles j'ai participé pour la partie théorique.<br /><br />J'étudie ensuite la manière dont le couplage fort lumière-matière peut influencer le transport électronique et les expériences d'électroluminescence. Dans ce but j'ai développé des méthodes analytiques et numériques que j'ai exploitées pour montrer qu'il est possible d'augmenter grandement l'efficacité quantique des LEDs basées sur des transitions intersousbandes. J'ai aussi donné une première preuve d'extension de l'effet Purcell au régime de couplage fort.<br />Enfin, dans ma dernière partie, j'ai développé la théorie du scattering stimulé entre polaritons intersousbandes dû au couplage avec des phonons optiques. Je montre que ce mécanisme peut être exploité afin d'obtenir des lasers sans inversion de population avec un seuil extrêmement bas.
|
8 |
Eléments de théorie de l'information quantique, décohérence et codes correcteurs quantiques.Ollivier, Harold 23 September 2004 (has links) (PDF)
Depuis 20 ans, l'information quantique a profondément changé notre façon d'appréhender la physique atomique, ainsi que la nature des ressources utiles au calcul. Cette thèse aborde trois aspects relatifs à l'information quantique: - Le phénomène de décohérence -- responsable de la transition quantique-classique -- est décrit quantitativement grâce à l'analyse de l'information mutuelle entre deux systèmes quantiques ; - Une nouvelle classe de codes correcteurs d'erreurs quantiques -- les codes convolutifs -- est introduite en detail et il est montré qu'elle partage les propriétés des codes convolutifs classiques (codage et décodage en ligne, algorithme efficace d'estimation d'erreurs au maximum de vraisemblance, existence de condition nécessaire et suffisante pour l'absence d'erreur catastrophique, etc.) ; - Quelques propositions expérimentales de manipulation d'information quantique sont décrites (porte de Toffoli et clonage universel pour l'électrodynamique quantique en cavité).
|
9 |
Des atomes froids pour sonder et manipuler des photons piégés / Cold atoms to probe and manipulate photons inside a cavityGrosso, Dorian 01 December 2017 (has links)
Mon travail porte sur la construction d'une expérience d'électrodynamique quantique en cavité visant à réaliser un long temps d'interaction entre des atomes, portés dans des états de Rydberg circulaires, et des photons confinés dans une cavité micro-onde supraconductrice. Une source d'atomes froids génère un jet vertical d'atomes lents, traversant le mode de la cavité, avec une vitesse moyenne de 12 m.s$^{-1}$. Ainsi, nous obtenons un temps d'interaction atome-champ de l'ordre de la milliseconde. Il devrait permettre, en particulier, l'implémentation de l'effet Zénon quantique dynamique (QZD) sur le champ. Cette dynamique non-classique est un outil puissant, permettant la manipulation cohérente de l'état du champ et la synthèse de superpositions arbitraires d'états quasi-classiques de Glauber. Sa mise en oeuvre nécessite une perturbation, faisant office de mesure, affectant seulement la cavité quand elle contient un nombre de photons $n_{0}$ choisi. Nous mettrons à profit le long temps d'interaction dont nous disposons afin de résoudre le spectre des états de l'atome habillés par le champ. L'anharmonicité du spectre vis-à-vis du nombre de photons permet une mesure sélective sur l'état de Fock $n_{0}$. Nous décrivons dans ce travail les premiers résultats expérimentaux attestant notre capacité à obtenir un long temps d'interaction. Nous présentons des données spectroscopiques résolvant les transitions associées aux états habillés correspondant à des nombres de photons allant de zéro à quatre et ce pour divers états du champ. Nous quantifions la sélection du nombre de photons obtenue à partir de telles mesures. Ces résultats ouvrent la voie à l'implémentation de la dynamique de Zénon. / The subject of my thesis was the construction of a new cavity quantum electrodynamics (CQED) setup. This setup allowed us to achieve a long interaction time between circular Rydberg states and a few photons confined inside a high-finesse supraconductor cavity. A cold atoms source produces a slow atomic beam of atoms with a mean velocity of about 12 m.s$^{-1}$ wich cross the cavity. With a few milisecond interaction time we are able to perform quantum Zeno dynamics (QZD) on the field. This evidently non-classical dynamics constitute an elegant tool to manipulate and synthetize arbitrary superpositions of quasi-classical Glauber states. Thanks to the anaharmonisity of the spectrum this can be achieved $via$ a probe pulse used for measurement, providing in a binary way the complete information to decide if there are $n_{0}$ photons in the cavity or not. Thanks to our long interaction time we are able to resolve the dressed states. In this work we describe the first results attesting our abily to achieve a long interaction time. Particularly, we report a long Rabi vacuum oscillation and the spectrum of the dressed states for different cavity fields. Finaly we characterize the efficiency with wich we can select a Fock state using the interaction with only one atom. This thesis paves the way to study QZD on the cavity field.
|
10 |
Mesure quantique non destructive répétée de la lunière: états de Fock et trajectoires quantiquesGuerlin, Christine 14 December 2007 (has links) (PDF)
Les postulats de la mesure, définissant une mesure Quantique Non Destructive (QND), précisent que la perturbation minimale sur un objet mesuré est une projection de son état. Les appareils de mesure habituellement utilisés se situent largement au-delà de cette limite minimale. Les photodétecteurs usuels en particulier absorbent, donc détruisent, les photons qu'ils détectent. Dans notre expérience d'électrodynamique quantique en cavité, des atomes de Rydberg circulaires et des photons micro-onde confinés dans une cavité supraconductrice interagissent dans le régime de couplage fort. A l'issue de l'interaction les deux systèmes sont intriqués: chacun d'eux emporte une information sur l'autre. Dans le cas désaccordé, l'effet de l'interaction est un simple déplacement d'énergie des niveaux atomiques, résultant en un déphasage du dipôle proportionnel au nombre de photons, mesurable par interférométrie de Ramsey. Les atomes délivrent donc une information sur le nombre de photons présents dans le champ sans l'avoir modifié. Selon ce principe, nous avons pu grâce au long temps de vie de notre cavité réaliser une mesure QND répétée du nombre de photons. L'évolution du nombre de photons en présence de relaxation révèle alors des sauts brusques, appelés sauts quantiques. Notre expérience a permis la première observation de ce comportement pour la lumière. En décrivant à l'aide de la loi de Bayes l'information délivrée par chaque détection atomique, nous avons pu suivre la projection progressive d'un état cohérent vers des états de Fock contenant jusqu'à sept photons. L'analyse statistique de nos résultats fournit une très claire illustration des postulats de la mesure quantique.
|
Page generated in 0.1105 seconds