• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 10
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 61
  • 61
  • 54
  • 54
  • 37
  • 21
  • 15
  • 14
  • 12
  • 12
  • 11
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Development of Electrically Conductive Thermoplastic Composites for Bipolar Plate Application in Polymer Electrolyte Membrane Fuel Cell

Yeetsorn, Rungsima 28 September 2010 (has links)
Polymer electrolyte membrane fuel cells (PEMFCs) have the potential to play a major role as energy generators for transportation and portable applications. One of the current barriers to their commercialization is the cost of the components and manufacturing, specifically the bipolar plates. One approach to preparing PEMFCs for commercialization is to develop new bipolar plate materials, related to mass production of fuel cells. Thermoplastic/carbon filler composites with low filler loading have a major advantage in that they can be produced by a conventional low-cost injection molding technique. In addition, the materials used are inexpensive, easy to shape, and lightweight. An optimal bipolar plate must possess high surface and bulk electronic conductivity, sufficient mechanical integrity, low permeability, and corrosion resistance. However, it is difficult to achieve high electrical conductivity from a low-cost thermoplastic composite with low conductive filler loading. Concerns over electrical conductivity improvement and the injection processability of composites have brought forth the idea of producing a polypropylene/three-carbon-filler composite for bipolar plate application. The thesis addresses the development of synergistic effects of filler combinations, investigating composite conductive materials and using composite bipolar plate testing in PEMFCs. One significant effect of conductive network formation is the synergetic effects of different carbon filler sizes, shapes, and multiple filler ratios on the electrical conductivity of bipolar plate materials. A polypropylene resin combined with low-cost conductive fillers (graphite, conductive carbon black, and carbon fibers with 55 wt% of filler loading) compose the main composite for all investigations in this research. Numerous composite formulations, based on single-, two-, and three-filler systems, have been created to investigate the characteristics and synergistic effects of multiple fillers on composite conductivity. Electrical conductivity measurements corresponding to PEMFC performance and processing characteristics were investigated. Experimental work also involved other ex-situ testing for the physical requirements of commercial bipolar plates. All combinations of fillers were found to have a significant synergistic effect that increased the composite electrical conductivity. Carbon black was found to have the highest influence on the increase of electrical conductivity compared to the other fillers. The use of conjugated conducting polymers such as polypyrrole (PPy) to help the composite blends gain desirable conductivities was also studied. Electrical conductivity was significantly improved conductivity by enriching the conducting paths on the interfaces between fillers and the PP matrix with PPy. The conductive network was found to have a linkage of carbon fibers following the respective size distributions of fibers. The combination of Fortafil and Asbury carbon fiber mixture ameliorated the structure of conductive paths, especially in the through-plane direction. However, using small fibers such as carbon nanofibers did not significantly improve in electrical conductivity. The useful characteristics of an individual filler and filler supportive functions were combined to create a novel formula that significantly improved electrical conductivity. Other properties, such as mechanical and rheological ones, demonstrate the potential to use the composites in bipolar plate applications. This research contributes a direction for further improvement of marketable thermoplastic bipolar plate composite materials.
22

Investigation of Hygro-Thermal Strain in Polymer Electrolyte Membranes Using Optical Coherence Elastography

Keller, Victor 12 August 2014 (has links)
The work present in this thesis report introduces a novel non-destructive technique for experimentally measuring through thickness hygro-thermal strain of Nafion membranes though digital image correlation. An Optical Coherence Tomography (OCT) system was used to acquire images of a Nafion-TiO2 (titanium dioxide powder) composite membranes in a fuel cell like device. The proposed technique, commonly known as optical coherence elastography (OCE) makes use of the normalized correlation algorithm to calculate strain between two successive scans of different relative humidity step values. Different normalized correlation parameters were compared to measured results of PDMS-TiO2 phantoms in order to analyze accuracy. The effect of TiO2 on Nafion membranbes mechanical properties was further analysed by comparing the swelling behaviour of membranes with different concentrations. It has been found that Nafion undergoes approximately 25 – 30% more strain on the land section than on the channel section, regardless gas diffusion electrode (GDE) layer presence. Furthermore, it was shown that the overall strain on the material decrease by approximately 10% when GDE layers are present. Overall this work demonstrated how OCE is a viable technique for measuring through thickness strain distribution in Nafion composite membranes and has the potential to be implemented for non-destructive in situ measurements. / Graduate / 0548 / kellerv@uvic.ca
23

Membranas protônicas à base de polindeno sulfonado e poli(fluoreto de vinilideno) para célula a combustível

Dei Agnoli, Raquel January 2016 (has links)
Membranas à base de polímeros perfluorosulfonados, como a Nafion, vêm sendo extensivamente usadas como membrana de troca protônica em células a combustível (FC). O objetivo deste trabalho foi desenvolver membranas eletrólito à base de polindeno sulfonado (SPInd) e poli(fluoreto de vinilideno) (PVDF), para uso como membranas de troca protônica em condições semelhantes às da membrana Nafion. As membranas foram preparadas por casting em diferentes composições utilizando PVDF como reforço mecânico e PVDF sulfonado (SPVDF) como agente compatibilizante. Todas as membranas foram avaliadas por análise termogravimétrica, calorimetria exploratória diferencial, análise dinâmico mecânica, microscopia eletrônica de varredura, grau de inchamento, capacidade de troca iônica e espectroscopia de impedância eletroquímica. As membranas com características semelhantes à membrana Nafion foram avaliadas em protótipo de FC a 80 °C. A membrana SPInd50/PVDF e as membranas com agente compatibilizante apresentaram condutividades iônicas na ordem de 10-2 S/cm, comparáveis àquela da membrana Nafion. A membrana com melhor desempenho em protótipo de FC foi o SPInd/PVDFC12, preparado com 50% de SPInd, 47,5% de PVDF e 2,5% de SPVDF (p/p), cujos valores de potencial de circuito aberto e densidade de potência máximo foram de 1,02 V e 74,54 mW/cm2, respectivamente. Apesar da densidade de potência máxima ser inferior à da membrana Nafion (603 mW/cm2), a membrana SPInd/PVDFC12 apresenta potencial para uso como eletrólito em célula a combustível. / Perfluorosulfonic acid ionomer membranes, e.g. Nafion, have been extensively used as proton exchange membranes in fuel cells (FC) due to their high proton conductivity and good mechanical properties. The aim of this work was to develop electrolyte membranes based on sulfonated polyindene (SPInd) and poly(vinylidene fluoride) (PVDF) to be used in the same conditions as Nafion. Membranes were prepared by casting with different compositions using PVDF as mechanical reinforcement and sulfonated PVDF (SPVDF) as coupling agent. The produced membranes were evaluated by thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis, scanning electron microscopy, water uptake, ion exchange capacity and electrochemical impedance spectroscopy. The membranes with similar results to Nafion, were evaluated in a FC prototype at 80 °C. The membrane SPInd50/PVDF and all the membranes with coupling agent had ionic conductivity in the order of 10-2 S/cm, comparable to the Nafion´s. The polyelectrolyte with the best performance was the SPInd/PVDFC12 which was prepared with 50 wt% SPInd, 47.5 wt% PVDF and 2.5 wt% SPVDF, that reached an open circuit voltage of 1.02 V and maximum power density of 74.54 mW/cm2. Even though Nafion´s maximum power density was higher (603 mW/cm2), the SPInd/PVDFC12 membrane showed potential to be used as electrolyte in fuel cells.
24

Avaliação de membranas hidrocarbônicas não fluoradas para uso como eletrólito em célula a combustível tipo DEFC

Marczynski, Elaine Sirlei January 2013 (has links)
Membranas hidrocarbônicas não fluoradas têm sido desenvolvidas para uso em substituição as membranas fluoradas (Nafion®) em células a combustível de eletrólito polimérico (PEMFC), ou em temperaturas superiores a 80 °C, ou em células com adição direta de álcool. Este trabalho teve como objetivo avaliar o desempenho de membranas hidrocarbônicas catiônicas, desenvolvidas para uso em célula a combustível alimentada com etanol (DEFC), e de camadas de difusão gasosa (GDL – Gas Difusion Layer) e eletrodos (GDE – Gas Difusion electrode) preparados para uso com as mesmas. Duas membranas hidrocarbônicas (E-750 e P-730) da empresa FuMATech®/GR foram avaliadas quanto à capacidade de troca iônica e grau de inchamento em água/etanol, quanto a composição química, morfologia, comportamento térmico e visoelástico e condutividade por impedância. As GDLs foram preparadas a partir de uma emulsão aquosa de Teflon® e pó de carbono Vulcan XC-72R®, com e sem agente emulsificante (resina sulfonada), dispersa em ambas as faces do tecido de carbono pelo método de aspersão. Os GDEs foram preparados pela deposição de emulsão catalítica de diferentes eletrocatalisadores sobre as respectivas GDLs do ânodo e catodo. Os GDEs anódico e catódico foram preparados com 1 mg.cm-2 do eletrocatalisador de PtSn/C 20% (75:15) e de Pt/C (20:80), respectivamente, e caracterizados por MEV-EDS. As características fisico-químicas das membranas hidrocarbônicas foram similares às apresentadas pela membrana Nafion®. O desempenho do protótipo de célula unitária DEFC com as membranas FuMATech® foi inferior ao obtido com a membrana Nafion® usando-se GDE comercial. Por outro lado, ensaios com a membrana Nafion® utilizando-se os eletrodos preparados neste trabalho e eletrodos comerciais apresentaram valores de potencial similares. / Non-fluorinated hydrocarbon cationic membranes have been developed for use instead of Nafion® in Polymer Electrolyte Membrane Fuel Cells (PEMFCs), or at higher temperatures than 80 ºC, or in fuel cells fed with alcohol. The aim of this work was to evaluate the performance of commercial non-fluorinated hydrocarbon cationic membranes with potential use in direct ethanol fuel cell (DEFC), and also evaluate the Gas Difusion Layer (GDL) and Gas Difusion electrode (GDE) prepared for use with them. Two hydrocarbon membranes (E-750 and P-730) produced by FuMATech®/GR were analyzed according to their ion exchange capacity, water uptake in water/alcohol solution, morphology, chemical composition, thermal and viscoelastic behaviour, and conductivity by impedance. The GDLs were prepared by spraying an aqueous emulsion of Vulcan carbon/Teflon®, with and without emulsifier agent (sulfonated hydrocarbon resin), in both sides of a carbon fabric. The electrodes were prepared by the respective deposition of the electrocatalysts emulsions on the cathode and anode GDLs. The anodic and cathodic GDEs were prepared with 1 mg.cm-2 of the electrocatalyst of PtSn/C 20% (75:15) and of Pt/C (20:80), respectively, which were characterized by SEM-EDS. The physicochemical properties of the hydrocarbon membranes were similar to the Nafion® membrane ones. The potential values obtained in a DEFC prototype unit cell with FuMATech® membranes were lower than those with Nafion-117 membrane. On the other hand, the performance of the DEFC prototype with Nafion-117 membrane was the same if used GDEs commercial or here prepared.
25

Simulation and optimisation of a high temperature polymer electrolyte membrane fuel cell stack for combined heat and power

Nomnqa, Myalelo Vuyisa January 2011 (has links)
Thesis (MTech (Chemical Engineering))--Cape Peninsula University of Technology, 2011 / High temperature polymer electrolyte membrane fuel cells (PEMFC) operating between 120-180 oC are currently of much research attention. The acid doped polybenzimidazole (PBI) membranes electrolyte are known for their tolerance to relatively high levels of carbon monoxide impurity in the feed. Most fuel cell modelling are theoretical in nature and are solved in commercial CFD platforms such as Fluent. The models require a lot of time to solve and are not simple enough to be used in complex systems such as CHP systems. This study therefore, focussed on developing a simple but yet accurate model of a high temperature PEMFC for a CHP system. A zero dimensional model for a single cell was developed and implemented in Engineering Equations Solver (EES) environment to express the cell voltage as a function of current density among others. Experimental results obtained from literature were used to validate and improve on the model. The validated models were employed for the simulation of the stack performance to investigate the effects of temperature, pressure, anode stoichiometry and the level of CO impurity in the synthesis gas, on the cell potential and overall performance. Good agreement was obtained from the simulation results and experimental data. The results showed that increasing temperature (up to 180oC) and acid doping level have positive effects on the cell performance. The results also show that the cell can operate with a reformate gas containing up to 2% CO without significant loss of cell voltage at elevated temperatures. The single cell model was extended to a 1 kWe high temperature PEMFC stack and micro-CHP system. The stacks model was validated with experimental data obtained from a test station. The model was used to investigate the performance of PEMFC and CHP system by using uncertainty propagation. The highest combined cogeneration system efficiency of 87.3% is obtained with the corresponding electrical and thermal efficiencies are 41.3% and 46 % respectively. The proposed fuel processing subsystem provides an adequate rate of CH4 conversion and acceptable CO-level, making it appropriate for integration with an HT PEMFC stack. In the steam methane reformer 97% of CH4 conversion is achieved and the water gas shift reactors achieve about 98% removal of CO.
26

Membranas protônicas à base de polindeno sulfonado e poli(fluoreto de vinilideno) para célula a combustível

Dei Agnoli, Raquel January 2016 (has links)
Membranas à base de polímeros perfluorosulfonados, como a Nafion, vêm sendo extensivamente usadas como membrana de troca protônica em células a combustível (FC). O objetivo deste trabalho foi desenvolver membranas eletrólito à base de polindeno sulfonado (SPInd) e poli(fluoreto de vinilideno) (PVDF), para uso como membranas de troca protônica em condições semelhantes às da membrana Nafion. As membranas foram preparadas por casting em diferentes composições utilizando PVDF como reforço mecânico e PVDF sulfonado (SPVDF) como agente compatibilizante. Todas as membranas foram avaliadas por análise termogravimétrica, calorimetria exploratória diferencial, análise dinâmico mecânica, microscopia eletrônica de varredura, grau de inchamento, capacidade de troca iônica e espectroscopia de impedância eletroquímica. As membranas com características semelhantes à membrana Nafion foram avaliadas em protótipo de FC a 80 °C. A membrana SPInd50/PVDF e as membranas com agente compatibilizante apresentaram condutividades iônicas na ordem de 10-2 S/cm, comparáveis àquela da membrana Nafion. A membrana com melhor desempenho em protótipo de FC foi o SPInd/PVDFC12, preparado com 50% de SPInd, 47,5% de PVDF e 2,5% de SPVDF (p/p), cujos valores de potencial de circuito aberto e densidade de potência máximo foram de 1,02 V e 74,54 mW/cm2, respectivamente. Apesar da densidade de potência máxima ser inferior à da membrana Nafion (603 mW/cm2), a membrana SPInd/PVDFC12 apresenta potencial para uso como eletrólito em célula a combustível. / Perfluorosulfonic acid ionomer membranes, e.g. Nafion, have been extensively used as proton exchange membranes in fuel cells (FC) due to their high proton conductivity and good mechanical properties. The aim of this work was to develop electrolyte membranes based on sulfonated polyindene (SPInd) and poly(vinylidene fluoride) (PVDF) to be used in the same conditions as Nafion. Membranes were prepared by casting with different compositions using PVDF as mechanical reinforcement and sulfonated PVDF (SPVDF) as coupling agent. The produced membranes were evaluated by thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis, scanning electron microscopy, water uptake, ion exchange capacity and electrochemical impedance spectroscopy. The membranes with similar results to Nafion, were evaluated in a FC prototype at 80 °C. The membrane SPInd50/PVDF and all the membranes with coupling agent had ionic conductivity in the order of 10-2 S/cm, comparable to the Nafion´s. The polyelectrolyte with the best performance was the SPInd/PVDFC12 which was prepared with 50 wt% SPInd, 47.5 wt% PVDF and 2.5 wt% SPVDF, that reached an open circuit voltage of 1.02 V and maximum power density of 74.54 mW/cm2. Even though Nafion´s maximum power density was higher (603 mW/cm2), the SPInd/PVDFC12 membrane showed potential to be used as electrolyte in fuel cells.
27

Avaliação de membranas hidrocarbônicas não fluoradas para uso como eletrólito em célula a combustível tipo DEFC

Marczynski, Elaine Sirlei January 2013 (has links)
Membranas hidrocarbônicas não fluoradas têm sido desenvolvidas para uso em substituição as membranas fluoradas (Nafion®) em células a combustível de eletrólito polimérico (PEMFC), ou em temperaturas superiores a 80 °C, ou em células com adição direta de álcool. Este trabalho teve como objetivo avaliar o desempenho de membranas hidrocarbônicas catiônicas, desenvolvidas para uso em célula a combustível alimentada com etanol (DEFC), e de camadas de difusão gasosa (GDL – Gas Difusion Layer) e eletrodos (GDE – Gas Difusion electrode) preparados para uso com as mesmas. Duas membranas hidrocarbônicas (E-750 e P-730) da empresa FuMATech®/GR foram avaliadas quanto à capacidade de troca iônica e grau de inchamento em água/etanol, quanto a composição química, morfologia, comportamento térmico e visoelástico e condutividade por impedância. As GDLs foram preparadas a partir de uma emulsão aquosa de Teflon® e pó de carbono Vulcan XC-72R®, com e sem agente emulsificante (resina sulfonada), dispersa em ambas as faces do tecido de carbono pelo método de aspersão. Os GDEs foram preparados pela deposição de emulsão catalítica de diferentes eletrocatalisadores sobre as respectivas GDLs do ânodo e catodo. Os GDEs anódico e catódico foram preparados com 1 mg.cm-2 do eletrocatalisador de PtSn/C 20% (75:15) e de Pt/C (20:80), respectivamente, e caracterizados por MEV-EDS. As características fisico-químicas das membranas hidrocarbônicas foram similares às apresentadas pela membrana Nafion®. O desempenho do protótipo de célula unitária DEFC com as membranas FuMATech® foi inferior ao obtido com a membrana Nafion® usando-se GDE comercial. Por outro lado, ensaios com a membrana Nafion® utilizando-se os eletrodos preparados neste trabalho e eletrodos comerciais apresentaram valores de potencial similares. / Non-fluorinated hydrocarbon cationic membranes have been developed for use instead of Nafion® in Polymer Electrolyte Membrane Fuel Cells (PEMFCs), or at higher temperatures than 80 ºC, or in fuel cells fed with alcohol. The aim of this work was to evaluate the performance of commercial non-fluorinated hydrocarbon cationic membranes with potential use in direct ethanol fuel cell (DEFC), and also evaluate the Gas Difusion Layer (GDL) and Gas Difusion electrode (GDE) prepared for use with them. Two hydrocarbon membranes (E-750 and P-730) produced by FuMATech®/GR were analyzed according to their ion exchange capacity, water uptake in water/alcohol solution, morphology, chemical composition, thermal and viscoelastic behaviour, and conductivity by impedance. The GDLs were prepared by spraying an aqueous emulsion of Vulcan carbon/Teflon®, with and without emulsifier agent (sulfonated hydrocarbon resin), in both sides of a carbon fabric. The electrodes were prepared by the respective deposition of the electrocatalysts emulsions on the cathode and anode GDLs. The anodic and cathodic GDEs were prepared with 1 mg.cm-2 of the electrocatalyst of PtSn/C 20% (75:15) and of Pt/C (20:80), respectively, which were characterized by SEM-EDS. The physicochemical properties of the hydrocarbon membranes were similar to the Nafion® membrane ones. The potential values obtained in a DEFC prototype unit cell with FuMATech® membranes were lower than those with Nafion-117 membrane. On the other hand, the performance of the DEFC prototype with Nafion-117 membrane was the same if used GDEs commercial or here prepared.
28

Avaliação de membranas hidrocarbônicas não fluoradas para uso como eletrólito em célula a combustível tipo DEFC

Marczynski, Elaine Sirlei January 2013 (has links)
Membranas hidrocarbônicas não fluoradas têm sido desenvolvidas para uso em substituição as membranas fluoradas (Nafion®) em células a combustível de eletrólito polimérico (PEMFC), ou em temperaturas superiores a 80 °C, ou em células com adição direta de álcool. Este trabalho teve como objetivo avaliar o desempenho de membranas hidrocarbônicas catiônicas, desenvolvidas para uso em célula a combustível alimentada com etanol (DEFC), e de camadas de difusão gasosa (GDL – Gas Difusion Layer) e eletrodos (GDE – Gas Difusion electrode) preparados para uso com as mesmas. Duas membranas hidrocarbônicas (E-750 e P-730) da empresa FuMATech®/GR foram avaliadas quanto à capacidade de troca iônica e grau de inchamento em água/etanol, quanto a composição química, morfologia, comportamento térmico e visoelástico e condutividade por impedância. As GDLs foram preparadas a partir de uma emulsão aquosa de Teflon® e pó de carbono Vulcan XC-72R®, com e sem agente emulsificante (resina sulfonada), dispersa em ambas as faces do tecido de carbono pelo método de aspersão. Os GDEs foram preparados pela deposição de emulsão catalítica de diferentes eletrocatalisadores sobre as respectivas GDLs do ânodo e catodo. Os GDEs anódico e catódico foram preparados com 1 mg.cm-2 do eletrocatalisador de PtSn/C 20% (75:15) e de Pt/C (20:80), respectivamente, e caracterizados por MEV-EDS. As características fisico-químicas das membranas hidrocarbônicas foram similares às apresentadas pela membrana Nafion®. O desempenho do protótipo de célula unitária DEFC com as membranas FuMATech® foi inferior ao obtido com a membrana Nafion® usando-se GDE comercial. Por outro lado, ensaios com a membrana Nafion® utilizando-se os eletrodos preparados neste trabalho e eletrodos comerciais apresentaram valores de potencial similares. / Non-fluorinated hydrocarbon cationic membranes have been developed for use instead of Nafion® in Polymer Electrolyte Membrane Fuel Cells (PEMFCs), or at higher temperatures than 80 ºC, or in fuel cells fed with alcohol. The aim of this work was to evaluate the performance of commercial non-fluorinated hydrocarbon cationic membranes with potential use in direct ethanol fuel cell (DEFC), and also evaluate the Gas Difusion Layer (GDL) and Gas Difusion electrode (GDE) prepared for use with them. Two hydrocarbon membranes (E-750 and P-730) produced by FuMATech®/GR were analyzed according to their ion exchange capacity, water uptake in water/alcohol solution, morphology, chemical composition, thermal and viscoelastic behaviour, and conductivity by impedance. The GDLs were prepared by spraying an aqueous emulsion of Vulcan carbon/Teflon®, with and without emulsifier agent (sulfonated hydrocarbon resin), in both sides of a carbon fabric. The electrodes were prepared by the respective deposition of the electrocatalysts emulsions on the cathode and anode GDLs. The anodic and cathodic GDEs were prepared with 1 mg.cm-2 of the electrocatalyst of PtSn/C 20% (75:15) and of Pt/C (20:80), respectively, which were characterized by SEM-EDS. The physicochemical properties of the hydrocarbon membranes were similar to the Nafion® membrane ones. The potential values obtained in a DEFC prototype unit cell with FuMATech® membranes were lower than those with Nafion-117 membrane. On the other hand, the performance of the DEFC prototype with Nafion-117 membrane was the same if used GDEs commercial or here prepared.
29

Durability studies of membrane electrode assemblies for high temperature polymer electrolyte membrane fuel cells

Fanapi, Nolubabalo Hopelorant January 2011 (has links)
>Magister Scientiae - MSc / Polymer electrolyte membrane fuel cells (PEMFCs) among other fuel cells are considered the best candidate for commercialization of portable and transportation applications because of their high energy conversion and low pollutant emission. Recently, there has been significant interest in high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs), due to certain advantages such as simplified system and better tolerance to CO poisoning. Cost, durability and the reliability are delaying the commercialization of PEM fuel cell technology. Above all durability is the most critical issue and it influences the other two issues. The main objective of this work is to study the durability of membrane electrode assemblies (MEAs) for HT-PEMFC. In this study the investigation of commercial MEAs was done by evaluating their performance through polarization studies on a single cell, including using pure hydrogen and hydrogen containing various concentrations of CO as fuel, and to study the performance of the MEAs at various operating temperatures. The durability of the MEAs was evaluated by carrying out long term studies with a fixed load, temperature cycling and open circuit voltage degradation. Among the parameters studied, significant loss in the performance of the MEAs was noted during temperature cycling. The effect of temperature cycling on the performance of the cell showed that the performance decreases with increasing no. of cycles. This could be due to leaching of acid from the cell or loss of electrochemically active surface area caused by Pt particle size growth. For example at 160°C, a performance loss of 3.5% was obtained after the first cycle, but after the fourth cycle a huge loss of 80.8% was obtained. The in-house MEAs with Pt-based binary catalysts as anodes were studied for CO tolerance, performance and durability. A comparison of polarization curves between commercial and in-house MEAs illustrated that commercial MEA gave better performance, obtaining 0.52 A/cm² at 0.5V and temperature of 160°C, with in-house giving 0.39A/cm² using same parameters as commercial. The CO tolerance of both commercial and in-house MEA was found to be similar. In order to increase the CO tolerance of the in-house MEAs, Pt based binary catalysts were employed as anodesand the performance was investigated In-house MEAs with Pt/C and Pt-based binary catalysts were compared and a better performance was observed for Pt/C than Pt-alloy catalysts with Pt-Co/C showing comparable performance. At 0.5 V the performance obtained was 0.39 A/cm2 for Pt/C, and 0.34A/cm²,0.28A/cm²,0.27A/cm² and 0.16A/cm² were obtained for Pt-Co/C, Pt-Fe/C, Pt-Cu/C and Pt-Ni respectively. When the binary catalysts were tested for CO tolerance, Pt-Co showed no significant loss in performance when hydrogen containing CO was used as anode fuel. Scanning electron microscopy (SEM) revealed delamination between the electrodes and membrane of the tested and untested MEA's. Membrane thinning was noted and carbon corrosion was observed from the tested micro-porous layer between the gas diffusion layer (GDL) and catalyst layer (CL).
30

Electrochemical Studies Of Nanoscale Composite Materials As Electrodes In Direct Alcohol Fuel Cells

Anderson, Jordan 01 January 2012 (has links)
Polymer electrolyte membrane fuel cells (PEMFCs) have recently acquired much attention as alternatives to combustion engines for power conversion. The primary interest in fuel cell technology is the possibility of 60% power conversion efficiency as compared to the 30% maximum theoretical efficiency limited to combustion engines and turbines. Although originally conceived to work with hydrogen as a fuel, difficulties relating to hydrogen storage have prompted much effort in using other fuels. Small organic molecules such as alcohols and formic acid have shown promise as alternatives to hydrogen in PEMFCs due to their higher stability at ambient conditions. The drawbacks for using these fuels in PEMFCs are related to their incomplete oxidation mechanisms, which lead to the production of carbon monoxide (CO). When carbon monoxide is released in fuel cells it binds strongly to the platinum anode thus limiting the adsorption and subsequent oxidation of more fuel. In order to promote the complete oxidation of fuels and limit poisoning due to CO, various metal and metal oxide catalysts have been used. Motivated by promising results seen in fuel cell catalysis, this research project is focused on the design and fabrication of novel platinum-composite catalysts for the electrooxidation of methanol, ethanol and formic acid. Various Pt-composites were fabricated including Pt-Au, PtRu, Pt-Pd and Pt-CeO2 catalysts. Electrochemical techniques were used to determine the catalytic ability of each novel composite toward the electrooxidation of methanol, ethanol and formic acid. This study indicates that the novel composites all have higher catalytic ability than bare Pt electrodes. The increase in catalytic ability is mostly attributed to the increase in CO poison tolerance and promotion of the complete oxidation mechanism of methanol, ethanol and iv formic acid. Formulations including bi- and tri-composite catalysts were fabricated and in many cases show the highest catalytic oxidation, suggesting tertiary catalytic effects. The combination of bi-metallic composites with ceria also showed highly increased catalytic oxidation ability. The following dissertation expounds on the relationship between composite material and the electrooxidation of methanol, ethanol and formic acid. The full electrochemical and material characterization of each composite electrode is provided.

Page generated in 0.1133 seconds