• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of vibrational and solar energy harvesting systems for powering wireless sensor networks in bridge structural health monitoring applications

Adams, Jacob Allan 03 February 2015 (has links)
Structural health monitoring systems provide a promising route to real-time data for analyzing the current state of large structures. In the wake of two high-profile bridge collapses due to an aging highway infrastructure, the interest in implementing such systems into fracture-critical and structurally deficient bridges is greater now than at any point in history. Traditionally, these technologies have not been cost-effective as bridges lack existing wiring architecture and the addition of this is cost prohibitive. Modern wireless sensor networks (WSN) now present a viable alternative to traditional networking; however, these systems must incorporate localized power sources capable of decade-long operation with minimal maintenance. To this end, this thesis explores the development of two energy harvesting systems capable of long-term bridge deployment with minimal maintenance. First, an electromagnetic, linear, vibrational energy harvester is explored that utilizes the excitations from passing traffic to induce motion in a translating permanent magnet mass. This motion is then converted to electrical energy using Faraday’s law of induction. This thesis presents a review of vibrational energy harvesting literature before detailing the process of designing, simulating, prototyping, and testing a selected design. Included is an analysis of the effects of frequency, excitation amplitude, load, and damping on the power production potential of the harvester. Second, a solar energy harvester using photovoltaic (PV) panels is explored for powering the critical gateway component of the WSN responsible for data aggregation. As solar energy harvesting is a more mature technology, this thesis focuses on the methodologies for properly sizing a solar harvesting system and experimentally validating the selected design. Fabrication of the prototype system was completed and field testing was performed in Austin, TX. The results validate the selected system’s ability to power the necessary 14 W DC load with a 0° panel azimuth angle (facing direct south) and 45° tilt. / text
2

Multi-source Energy Harvesting for Wildlife Tracking

Wu, You 06 July 2015 (has links)
Sufficient power supply to run GPS machinery and transmit data on a long-term basis remains to be the key challenge for wildlife tracking technology. Traditional ways of replacing battery periodically is not only time and money consuming but also dangerous to live-trapping wild animals. In this paper, an innovative wildlife tracking collar with multi-source energy harvester with advantage of high efficiency and reliability is proposed. This multi-source energy harvester entails a solar energy harvester and an innovative rotational electromagnetic energy harvester is mounted on the "wildlife tracking collar" which will extend the duration of wild life tracking by 20% time as was estimated. A feedforward and feedback control of DC-DC converter circuit is adopted to passively realize the Maximum Power Point Tracking (MPPT) logic for the solar energy harvester. A novel electromagnetic pendulum energy harvester with motion regulator is proposed which can mechanically rectify the irregular bidirectional swing motion of the pendulum into unidirectional rotational motion of the motor. No electrical rectifier is needed and voltage drops from diodes can be avoided, the EM pendulum energy harvester can provide 200~300 mW under the 0.4g base excitation of 4.5 Hz. The nonlinearity of the disengage mechanism in the pendulum energy harvester will lead to a broad bandwidth frequency response. Simulation results shows the broadband advantage of the proposed energy harvester and experiment results verified that at some frequencies over the natural frequency the efficiency is increased. / Master of Science

Page generated in 0.1016 seconds