• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 273
  • 273
  • 231
  • 229
  • 218
  • 13
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Modelagem numerica de problemas de dominios acoplados para aplicação em microsistemas eletromecanicos / Coupled field problems numerical modeling for microelectromechanical systems

Poel Filho, Cornelis Joannes van der 25 February 2005 (has links)
Orientador: Renato Pavanello / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia mecanica / Made available in DSpace on 2018-08-04T08:49:46Z (GMT). No. of bitstreams: 1 PoelFilho_CornelisJoannesvander_D.pdf: 8296875 bytes, checksum: 048da8ba9cfe029f98229ac0b593f989 (MD5) Previous issue date: 2005 / Resumo: Microsistemas eletromecânicos geralmente têm seu princípio de funcionamento baseado na interação entre dois ou mais campos físicos. Para seu projeto são necessárias ferramentas de simulação multi-domínios. Este trabalho visa estudar o fenômeno de acoplamento eletromecânico em microsistemas e construir uma ferramenta de simulação numérica para este tipo de problema. São apresentados métodos de análise estática, modal e transiente baseados em modelos de elementos finitos e de ordem reduzida. Na análise estática cada domínio é resolvido separadamente. Foi mostrado um método de transferência das forças eletrostáticas para o domínio mecânico e proposto e testado um esquema de atualização da malha elétrica. Para a análise dinâmica transiente foi implementado um método de Newmark adaptado de forma a considerar os efeitos do acoplamento eletromecânico. Outro método de análise dinâmica apresentado é baseado numa estratégia de perturbação do sistema em equilíbrio em conjunto com a resolução de um problema de autovalor / autovetor. O método de perturbação fornece diretamente as freqüências naturais de vibração do sistema acoplado. A técnica de redução de ordem apresentada é baseada numa projeção de Galerkin da equação diferencial governante utilizando como funções de base os modos empíricos do sistema dinâmico. Um programa computacional para modelagem numérica multi-domínios com solução particionada para o acoplamento eletromecânico foi proposto e implementado. O código computacional, denominado MefLab, onde os métodos numéricos foram programados, usa o paradigma de orientação a objetos e a linguagem C++. Resultados com as diversas metodologias são mostrados e analisados / Abstract: Microelectromechanical systems have their working principIes based on the interaction between two or more physical fields. To design them, multi-physics simulation tools are needed. This work aims to study the coupled field effects in microsystems and build a computer code for numerical simulation of this problem. Static, dynamic modal and transient methods are introduced. They are based on finite elements and reduced order models. The static analysis is done by a staggered treatment. A method for transfering electrostatic pressures to the mechanical domain was shown and a mesh updating scheme was proposed and tested. For the transient analysis, in order to consider the electromechanical coupling effects, an adaptation was inserted in the classical Newmark direct integration method. A dynamical modal method based in a perturbation strategy was presented. It involves the staggered static algorithm and the solution of an eigenvalue/eigenvector problem. This method is able to give the natural coupled frequencies of the system with low computational costs. A reduced order modeI was constructed by using a Galekin projection of the governing differential equations in an empirical basis. This basis was obtained through results of transient finite element analysis. A multi-domain project with staggered procedures for the electromechanical coupling was proposed and implemented. It refers to the software MefLab++, a computer code written in C++ where numerical strategies are programmed according to the oriented object paradigm. Numerical results for the static, dynamic modal and transient methodologies are shown / Doutorado / Mecanica dos Sólidos e Projeto Mecanico / Doutor em Engenharia Mecânica
272

High performance DSP-based servo drive control for a limited-angle torque motor

Zhang, Yi January 1997 (has links)
This thesis describes the analysis, design and implementation of a high performance DSP-based servo drive for a limited-angle torque motor used in thermal imaging applications. A limited-angle torque motor is an electromagnetic actuator based on the Laws' relay principle, and in the present application the rotation required was from - 10° to + 10° in 16 ms, with a flyback period of 4 ms. To ensure good quality picture reproduction, an exceptionally high linearity of ±0.02 ° was necessary throughout the forward sweep. In addition, the drive voltage to the exciting winding of the motor should be less than the +35 V ceiling of the drive amplifier. A research survey shows that little literature was available, probably due to the commercial sensitivity of many of the applications for torque motors. A detailed mathematical model of the motor drive, including high-order linear dynamics and the significant nonlinear characteristics, was developed to provide an insight into the overall system behaviour. The proposed control scheme uses a multicompensator, multi-loop linear controller, to reshape substantially the motor response characteristic, with a non-linear adaptive gain-scheduled controller to compensate effectively for the nonlinear variations of the motor parameters. The scheme demonstrates that a demanding nonlinear control system may be conveniently analysed and synthesised using frequency-domain methods, and that the design techniques may be reliably applied to similar electro-mechanical systems required to track a repetitive waveform. A prototype drive system was designed, constructed and tested during the course of the research. The drive system comprises a DSP-based digital controller, a linear power amplifier and the feedback signal conditioning circuit necessary for the closed-loop control. A switch-mode amplifier was also built, evaluated and compared with the linear amplifier. It was shown that the overall performance of the linear amplifier was superior to that of the switch-mode amplifier for the present application. The control software was developed using the structured programming method, with the continuous controller converted to digital form using the bilinear transform. The 6- operator was used rather than the z-operator, since it is more advantageous for high speed sampling systems. The gain-scheduled control was implemented by developing a schedule table, which is controlled by the DSP program to update continuously the controller parameters in synchronism with the periodic scanning of the motor. The experimental results show excellent agreement with the simulated results, with linearity of ±0.05 ° achieved throughout the forward sweep. Although this did not quite meet the very demanding specifications due to the limitations of the experimental drive system, it clearly demonstrates the effectiveness of the proposed control scheme. The discrepancies between simulated and experimental results are analyzed and discussed, the control design method is reviewed, and detailed suggestions are presented for further work which may improve the drive performance.
273

The development of polystyrene based microfluidic gas generation system

Yuanzhi, Cao 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The purpose of this thesis is to use experimental methods to seek deeper understanding and better performance in the self-circulating self-regulating microfluidic gas generator initially developed in Dr. Zhu’s group, by changing the major features and dimensions in the reaction channel of the device. In order to effectively conduct experiments described above, a microfabrication method that is capable of making new microfluidic devices with low cost, short time period, as well as relatively high accuracy was needed first. Developing such a fabrication method is the major part of this thesis. We initially used patterned polymer films and glass slide, and bonded them together by sequentially aligning and stacking them into a microfluidic device with patterned double-sided tapes. Later we developed a more advanced microfabrication method that used only patterned polystyrene (PS) films. The patterned PS films were obtained from a digital cutter and they were bonded into a microfluidic device by thermopress bonding method that required no heterogeneous bonding agents. This new method did not need manual assembly which greatly improved its precision (~ 100 µm), and it used only PS as device material that has favorable surface wetting property for microfluidics applications. In order to find the optimized microfluidic channel design to improve gas generating performance, we've designed and fabricated microfluidic devices with different channel dimensions using the PS fabrication method. Based on the gas generation testing results of those devices, we were able to come up with the optimal dimensions for the reaction channel that had the best gas generation performance. To obtain a more fundamental understanding about the working mechanism of our device and its bubble dynamics, we have conducted ultrafast X-ray imaging test at Advanced Photon Source (APS), Argonne National Laboratory. High speed (100 KHz) phase contrast images were captured that allowed us to observe directly inside the reaction channel on the cross section view during the self-circulating catalytic reaction. The images provided us with lots of insightful information that in turn helped the dimensional improvement for the microchannel design. The 100 KHz high speed images also gave us useful information about the dynamics of bubble development on a catalyst bed, such as growth and merging of the bubbles.

Page generated in 0.0678 seconds