Spelling suggestions: "subject:"alectron dionization"" "subject:"alectron deionization""
1 |
Applications of Adiabatic Approximation to One- and Two-electron Phenomena in Strong Laser FieldsBondar, Denys January 2010 (has links)
The adiabatic approximation is a natural approach for the description of phenomena induced by low frequency laser radiation because the ratio of the laser frequency to the characteristic frequency of an atom or a molecule is a small parameter. Since the main aim of this work is the study of ionization phenomena, the version of the adiabatic approximation that can account for the transition from a bound state to the continuum must be employed. Despite much work in this topic, a universally accepted adiabatic approach of bound-free transitions is lacking. Hence, based on Savichev's modified adiabatic approximation [Sov. Phys. JETP 73, 803 (1991)], we first of all derive the most convenient form of the adiabatic approximation for the problems at hand. Connections of the obtained result with the quasiclassical approximation and other previous investigations are discussed. Then, such an adiabatic approximation is applied to single-electron ionization and non-sequential double ionization of atoms in a strong low frequency laser field.
The momentum distribution of photoelectrons induced by single-electron ionization is obtained analytically without any assumptions on the momentum of the electrons. Previous known results are derived as special cases of this general momentum distribution.
The correlated momentum distribution of two-electrons due to non-sequential double ionization of atoms is calculated semi-analytically. We focus on the deeply quantum regime -- the below intensity threshold regime, where the energy of the active electron driven by the laser field is insufficient to collisionally ionize the parent ion, and the assistance of the laser field is required to create a doubly charged ion. A special attention is paid to the role of Coulomb interactions in the process. The signatures of electron-electron repulsion, electron-core attraction, and electron-laser interaction are identified. The results are compared with available experimental data.
Two-electron correlated spectra of non-sequential double ionization below intensity threshold are known to exhibit back-to-back scattering of the electrons, viz., the anticorrelation of the electrons. Currently, the widely accepted interpretation of the anticorrelation is recollision-induced excitation of the ion plus subsequent field ionization of the second electron. We argue that there exists another mechanism, namely simultaneous electron emission, when the time of return of the rescattered electron is equal to the time of liberation of the bounded electron (the ion has no time for excitation), that can also explain the anticorrelation of the electrons in the deep below intensity threshold regime.
Finally, we study single-electron molecular ionization. Based on the geometrical approach to tunnelling by P. D. Hislop and I. M. Sigal [Memoir. AMS 78, No. 399 (1989)], we introduce the concept of a leading tunnelling trajectory. It is then proven that leading tunnelling trajectories for single active electron models of molecular tunnelling ionization (i.e., theories where a molecular potential is modelled by a single-electron multi-centre potential) are linear in the case of short range interactions and ``almost'' linear in the case of long range interactions. The results are presented on both the formal and physically intuitive levels. Physical implications of the proven statements are discussed.
|
2 |
Applications of Adiabatic Approximation to One- and Two-electron Phenomena in Strong Laser FieldsBondar, Denys January 2010 (has links)
The adiabatic approximation is a natural approach for the description of phenomena induced by low frequency laser radiation because the ratio of the laser frequency to the characteristic frequency of an atom or a molecule is a small parameter. Since the main aim of this work is the study of ionization phenomena, the version of the adiabatic approximation that can account for the transition from a bound state to the continuum must be employed. Despite much work in this topic, a universally accepted adiabatic approach of bound-free transitions is lacking. Hence, based on Savichev's modified adiabatic approximation [Sov. Phys. JETP 73, 803 (1991)], we first of all derive the most convenient form of the adiabatic approximation for the problems at hand. Connections of the obtained result with the quasiclassical approximation and other previous investigations are discussed. Then, such an adiabatic approximation is applied to single-electron ionization and non-sequential double ionization of atoms in a strong low frequency laser field.
The momentum distribution of photoelectrons induced by single-electron ionization is obtained analytically without any assumptions on the momentum of the electrons. Previous known results are derived as special cases of this general momentum distribution.
The correlated momentum distribution of two-electrons due to non-sequential double ionization of atoms is calculated semi-analytically. We focus on the deeply quantum regime -- the below intensity threshold regime, where the energy of the active electron driven by the laser field is insufficient to collisionally ionize the parent ion, and the assistance of the laser field is required to create a doubly charged ion. A special attention is paid to the role of Coulomb interactions in the process. The signatures of electron-electron repulsion, electron-core attraction, and electron-laser interaction are identified. The results are compared with available experimental data.
Two-electron correlated spectra of non-sequential double ionization below intensity threshold are known to exhibit back-to-back scattering of the electrons, viz., the anticorrelation of the electrons. Currently, the widely accepted interpretation of the anticorrelation is recollision-induced excitation of the ion plus subsequent field ionization of the second electron. We argue that there exists another mechanism, namely simultaneous electron emission, when the time of return of the rescattered electron is equal to the time of liberation of the bounded electron (the ion has no time for excitation), that can also explain the anticorrelation of the electrons in the deep below intensity threshold regime.
Finally, we study single-electron molecular ionization. Based on the geometrical approach to tunnelling by P. D. Hislop and I. M. Sigal [Memoir. AMS 78, No. 399 (1989)], we introduce the concept of a leading tunnelling trajectory. It is then proven that leading tunnelling trajectories for single active electron models of molecular tunnelling ionization (i.e., theories where a molecular potential is modelled by a single-electron multi-centre potential) are linear in the case of short range interactions and ``almost'' linear in the case of long range interactions. The results are presented on both the formal and physically intuitive levels. Physical implications of the proven statements are discussed.
|
3 |
Integrating Mass Spectrometry and Computational Chemistry: A Study of Dissociation Reactions of Radical Cations in the Gas PhaseLee, Richard 09 1900 (has links)
<p> The organic ions studied in this thesis were generated in the rarefied gas phase of the mass spectrometer by electron ionization of selected precursor molecules. The characterization of their structure and reactivity was probed by using a variety of tandem mass spectrometry techniques. These include metastable ion spectra to probe the dissociation chemistry of the low energy ions and collision experiments to establish the atom connectivity of the ions. The technique of neutralization-reionization mass spectrometry (NRMS) was used to probe the structure and stability of the neutral counterparts of the ions. Computational results involving the CBS-QB3 model chemistry formed an integral component in the interpretation of the experimental findings.</p> <p> The above approach was used to study proton-transport catalysis in the formaldehyde elimination from low energy 1,3-dihydroxyacetone radical cations. Solitary ketene-water ions, CH2=C(=O)OH2·+, do not readily isomerize into its more stable isomer, CH2=C(OH)2·+. A mechanistic analysis using the CBS-QB3 model chemistry shows that metastable 1,3-dihydroxyacetone radical cations will rearrange into hydrogen-bridged radical cations [CH2C(=O)O(H)-H•••OCH2]·+, where the CH2=O will catalyze the
transformation of CH2=C(=O)OH2·+ into CH2=C(OH)2·+.</p> <p> Metastable pyruvic acid radical cations, CH3C(=O)COOH·+, have been shown to undergo decarboxylation to yield m/z 44 ions, C2H4O·+, in competition with the formation of CH3C=O+ + COOH· by direct bond cleavage. Collision induced dissociation experiments agree with an earlier report that oxycarbene ions CH3COH·+ are formed but they also suggest the more stable isomer CH3C(H)=O·+ may be co-generated. Using the CBS-QB3 model chemistry, a mechanism is proposed to rationalize these results.</p> <p> Next, the isomeric ions CH3O-P=S·+ and CH3S-P=O·+ were characterized and differentiated by tandem mass spectrometry. Metastable CH3O-P=S·+ and CH3S-P=O·+ ions both spontaneously lose water to yield m/lz 74 cyclic product ion [-S-CH=]P·+. Using the CBS-QB3 model chemistry a mechanism is proposed for the water loss from CH3O-P=S·+ and CH3S-P=O·+. Our calculations also show that these two isomers communicate via a common intermediate, the distonic ion CH2S-P-OH·+, prior to the loss of water.</p> <p> The final component of this work details the computational study addressing the long standing question on the mechanism for the water elimination from metastable ethyl acetate radical cations. The CBS-QB3 results show that low energy ethyl acetate ions isomerize into ionized 4-hydroxy-2-butanone prior to the loss of water.</p> / Thesis / Master of Science (MSc)
|
4 |
Direct, quantitative analysis of organic contaminants in complex samples using membrane introduction mass spectrometry with electron and chemical ionizationVandergrift, Gregory William 07 January 2021 (has links)
Condensed phase membrane introduction mass spectrometry (CP-MIMS) is a direct, in situ analysis technique that is well suited to persistent organic pollutants, pesticides, and other small molecules. In CP-MIMS, neutral analytes permeate a hollow fibre membrane, typically polydimethylsiloxane (PDMS), driven by a concentration gradient. Analytes are subsequently dissolved by a liquid (condensed) solvent acceptor phase that is continuously flowed through the membrane lumen, which finally entrains the analytes to a mass spectrometer for detection. The membrane rejects charged and particulate matrix components, therefore eliminating sample cleanup that is otherwise necessary for conventional (i.e., chromatographic) techniques. However, larger analytes may suffer from relatively lengthy response times and lower sensitivity. A heptane cosolvent was therefore doped into the PDMS membrane, resulting in a polymer inclusion membrane (PIM). Through a system coupling CP-MIMS to electrospray ionization (ESI), the use of a PIM for model compounds resulted in faster response (~3×) and improved sensitivity (~3.5×, parts per trillion level detection limits).
While effective for the demonstration of the PIM, pairing ESI with CP-MIMS represents an inherent incongruity: ESI is effective for polar, hydrophilic analytes, whereas CP-MIMS (i.e., PDMS membranes) is effective for hydrophobic analytes. CP-MIMS was therefore coupled with liquid electron ionization (LEI) as a more suitable ionization strategy. In LEI, the post-membrane solvent flow is entrained at nanolitre per minute flowrates to a LEI source, where the liquid is sequentially nebulized, vaporized, and ionized. The CP-MIMS-LEI coupling was optimized for the measurements of polycyclic aromatic hydrocarbon (PAH) isomer classes from aqueous samples, demonstrating low ng/L detection limits and response times (≤1.6 min). CP-MIMS-LEI was also applied to PAH isomer classes from soil samples, demonstrating rapid sample throughput (15 samples/hr) and low μg/kg detection limits, and additionally was quantitatively comparable to conventional techniques. A similar CP-MIMS-LEI system was applied to online monitoring of catalytic oxidation and alkylation reactions, demonstrating quantitative, real-time results for harsh, complex organic reaction mixtures.
A significant analytical improvement was conducted by intentionally exploiting the already present liquid acceptor phase as an in situ means of providing liquid chemical ionization (CI) reagents for improved analyte sensitivity and selectivity (i.e., CP-MIMS-LEI/CI). Acetonitrile and diethyl ether were used as a combination acceptor phase/CI reagent system (i.e., proton transfer reagents) for the direct analysis of bis(2-ethylhexyl)phthalate from house dust (6 mg/kg detection limit). CP-MIMS-LEI/CI was then applied to PAHs from soils. Using methanol and dichloromethane combination acceptor phase/CI reagents, CP-MIMS-LEI/CI was shown to quantify and resolve PAH isomers from direct soil analyses via diagnostic PAH adduct ions: [M+CH2Cl+CH3OH-HCl]+ or [M+CHCl2-HCl]+. Using these selective ions, CP-MIMS-LEI/CI was again shown to be rapid (15 soils/hr), sensitive (ng/g detection limits) and quantitatively comparable to gas chromatography-MS for PAH measurements (average percent difference of -9% across 9 PAHs in 8 soil samples). The results across this thesis present a compelling argument for direct, quantitative screening from complex samples using CP-MIMS-LEI/CI, particularly given the simple workflow and short analytical duty cycle. / Graduate
|
Page generated in 0.0754 seconds