• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • Tagged with
  • 13
  • 13
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Applications of Adiabatic Approximation to One- and Two-electron Phenomena in Strong Laser Fields

Bondar, Denys January 2010 (has links)
The adiabatic approximation is a natural approach for the description of phenomena induced by low frequency laser radiation because the ratio of the laser frequency to the characteristic frequency of an atom or a molecule is a small parameter. Since the main aim of this work is the study of ionization phenomena, the version of the adiabatic approximation that can account for the transition from a bound state to the continuum must be employed. Despite much work in this topic, a universally accepted adiabatic approach of bound-free transitions is lacking. Hence, based on Savichev's modified adiabatic approximation [Sov. Phys. JETP 73, 803 (1991)], we first of all derive the most convenient form of the adiabatic approximation for the problems at hand. Connections of the obtained result with the quasiclassical approximation and other previous investigations are discussed. Then, such an adiabatic approximation is applied to single-electron ionization and non-sequential double ionization of atoms in a strong low frequency laser field. The momentum distribution of photoelectrons induced by single-electron ionization is obtained analytically without any assumptions on the momentum of the electrons. Previous known results are derived as special cases of this general momentum distribution. The correlated momentum distribution of two-electrons due to non-sequential double ionization of atoms is calculated semi-analytically. We focus on the deeply quantum regime -- the below intensity threshold regime, where the energy of the active electron driven by the laser field is insufficient to collisionally ionize the parent ion, and the assistance of the laser field is required to create a doubly charged ion. A special attention is paid to the role of Coulomb interactions in the process. The signatures of electron-electron repulsion, electron-core attraction, and electron-laser interaction are identified. The results are compared with available experimental data. Two-electron correlated spectra of non-sequential double ionization below intensity threshold are known to exhibit back-to-back scattering of the electrons, viz., the anticorrelation of the electrons. Currently, the widely accepted interpretation of the anticorrelation is recollision-induced excitation of the ion plus subsequent field ionization of the second electron. We argue that there exists another mechanism, namely simultaneous electron emission, when the time of return of the rescattered electron is equal to the time of liberation of the bounded electron (the ion has no time for excitation), that can also explain the anticorrelation of the electrons in the deep below intensity threshold regime. Finally, we study single-electron molecular ionization. Based on the geometrical approach to tunnelling by P. D. Hislop and I. M. Sigal [Memoir. AMS 78, No. 399 (1989)], we introduce the concept of a leading tunnelling trajectory. It is then proven that leading tunnelling trajectories for single active electron models of molecular tunnelling ionization (i.e., theories where a molecular potential is modelled by a single-electron multi-centre potential) are linear in the case of short range interactions and ``almost'' linear in the case of long range interactions. The results are presented on both the formal and physically intuitive levels. Physical implications of the proven statements are discussed.
2

Applications of Adiabatic Approximation to One- and Two-electron Phenomena in Strong Laser Fields

Bondar, Denys January 2010 (has links)
The adiabatic approximation is a natural approach for the description of phenomena induced by low frequency laser radiation because the ratio of the laser frequency to the characteristic frequency of an atom or a molecule is a small parameter. Since the main aim of this work is the study of ionization phenomena, the version of the adiabatic approximation that can account for the transition from a bound state to the continuum must be employed. Despite much work in this topic, a universally accepted adiabatic approach of bound-free transitions is lacking. Hence, based on Savichev's modified adiabatic approximation [Sov. Phys. JETP 73, 803 (1991)], we first of all derive the most convenient form of the adiabatic approximation for the problems at hand. Connections of the obtained result with the quasiclassical approximation and other previous investigations are discussed. Then, such an adiabatic approximation is applied to single-electron ionization and non-sequential double ionization of atoms in a strong low frequency laser field. The momentum distribution of photoelectrons induced by single-electron ionization is obtained analytically without any assumptions on the momentum of the electrons. Previous known results are derived as special cases of this general momentum distribution. The correlated momentum distribution of two-electrons due to non-sequential double ionization of atoms is calculated semi-analytically. We focus on the deeply quantum regime -- the below intensity threshold regime, where the energy of the active electron driven by the laser field is insufficient to collisionally ionize the parent ion, and the assistance of the laser field is required to create a doubly charged ion. A special attention is paid to the role of Coulomb interactions in the process. The signatures of electron-electron repulsion, electron-core attraction, and electron-laser interaction are identified. The results are compared with available experimental data. Two-electron correlated spectra of non-sequential double ionization below intensity threshold are known to exhibit back-to-back scattering of the electrons, viz., the anticorrelation of the electrons. Currently, the widely accepted interpretation of the anticorrelation is recollision-induced excitation of the ion plus subsequent field ionization of the second electron. We argue that there exists another mechanism, namely simultaneous electron emission, when the time of return of the rescattered electron is equal to the time of liberation of the bounded electron (the ion has no time for excitation), that can also explain the anticorrelation of the electrons in the deep below intensity threshold regime. Finally, we study single-electron molecular ionization. Based on the geometrical approach to tunnelling by P. D. Hislop and I. M. Sigal [Memoir. AMS 78, No. 399 (1989)], we introduce the concept of a leading tunnelling trajectory. It is then proven that leading tunnelling trajectories for single active electron models of molecular tunnelling ionization (i.e., theories where a molecular potential is modelled by a single-electron multi-centre potential) are linear in the case of short range interactions and ``almost'' linear in the case of long range interactions. The results are presented on both the formal and physically intuitive levels. Physical implications of the proven statements are discussed.
3

Kvantová dynamika malých molekul / Quantum dynamics of small molecules

Augustovičová, Lucie January 2014 (has links)
This thesis deals with the process of molecular ions formation in interstellar space, which played an important role in the early Universe. A large part of the work focuses on the theoretical study of quantum dynamics of the process of radiative association pre- dominantly induced by dipole transitions. The effect of quadrupole transitions on the radiative association have also been taken into account, which has been studied for the first time. Furthermore, spectroscopic characteristics of rovibronic transitions of selected di- atomic ions for the study of cosmological variability of fundamental constants were determined. The main outcomes of the thesis include the characterization of depopulation of metastable levels He (23S) and He (21S) due to radiative collisions with hydrogen, helium and lithium ions, i. e. He + A+ → HeA+ + hν. Within the study quantum dynamics calculations were carried out using a fully quan- tal approach. Studied spontaneous and stimulated processes on a specific spin manifold were characterized by energy-dependent cross sections and temperature-dependent rate coefficients. Compared to previous published works by other authors highly excited electronic states are considered. The results showed that a) the spontaneous radiative association contributes significantly to the...
4

Structure of hypernuclei studied with the integrodifferential equations approach

Nkuna, John Solly 06 1900 (has links)
A two-dimensional integrodi erential equation resulting from the use of potential harmonics expansion in the many-body Schr odinger equation is used to study ground-state properties of selected few-body nuclear systems. The equation takes into account twobody correlations in the system and is applicable to few- and many-body systems. The formulation of the equation involves the use of the Jacobi coordinates to de ne relevant global coordinates as well as the elimination of center-of-mass dependence. The form of the equation does not depend on the size of the system. Therefore, only the interaction potential is required as input. Di erent nucleon-nucleon potentials and hyperon-nucleon potentials are employed to construct the Hamiltonian of the systems. The results obtained are in good agreement with those obtained using other methods. / Physics
5

Essai sur les symétries géométriques et les transitions de forme du noyau de l'atome / Studies of the geometric symmetries and the shape transitions in atomic nuclei

Rouvel, David 11 September 2014 (has links)
Les symétries géométriques en usage en physique nucléaire sont assez peu variées, essentiellement la symétrie de l’ellipsoïde triaxial. On propose donc une méthode rigoureuse permettant d’étudier l’évolution et la possibilité de l’existence de symétries nouvelles dont la symétrie tétraédrique. Le formalisme de l’équation de SCHRÖDINGER est replacé dans le cadre des espaces de RIEMANN. Ce formalisme est utilisé dans le contexte du noyau de l’atome où l’on applique la théorie du champ moyen alliée à l’approximation adiabatique. Le noyau est le siège de deux catégories de mouvements adiabatiquement séparés, le mouvement rapide des nucléons dans le champ moyen, et le mouvement collectif modifiant lentement le champ moyen. Le second est régi par une équation de SCHRÖDINGER collective qui prend place dans un espace dont la métrique est donnée par le tenseur de masse. L’étude de la géométrie du noyau est alors calculable à l’aide de deux grands programmes développés dans le cadre de la thèse. / The geometrical symmetries used in nuclear physics are not very diversified, essentially the symmetry of the triaxial ellipsoid. One proposes therefore a rigourous method allowing to study the temporal evolution and the possibility of the existence of new symmetries among them the tetrahedral symmetry. The formalism of SCHRÖDINGER equation is reformulated in the framework of RIEMANN’s spaces. This formalism is used in the context of the atomic nucleus where one applies the mean-field theory combined with the adiabatic approximation. The nucleus is the terrain of two types of motions adiabatically separated, the quick motion of the nucleons in the mean-field and the collective motion modifying slowly the meanfield. The second one is governed by a collective SCHRÖDINGER equation written down in a space whose metric is given by the mass tensor. The study of the nucleus geometry is then computable with the help of two big programs developped within the thesis.
6

Cálculo da probabilidade de adesão de átomo incidente em superfície metálica. / Computation of the sticking probability of a incident atom on metallic surface.

Yoshida, Makoto 11 September 1986 (has links)
Desenvolve-se um novo método de cálculo da probabilidade de adsorção química de átomos incidentes em superfícies metálicas. Introduz-se um modelo teórico de adsorção cujo Hamiltoniano descreve um átomo incidindo normalmente e interagindo com os elétrons da banda de condução de uma superfície metálica. Como interações, são levadas em consideração (1) a possibilidade de transferência de energia cinética e de carga do átomo para o metal e (2) o potencial de carga imagem do átomo ionizado. A solução do modelo consiste em se tratar a parte eletrônica e a nuclear do Hamiltoniano separadamente. A parte eletrônica é tratada com a técnica de grupo de renormalização introduzida por Wilson e a parte nuclear, através da solução numérica da equação de Schrödinger para o movimento nuclear. O acoplamento entre as duas componentes do hamiltoniano é tratado como perturbação à aproximação adiabática. A probabilidade de adsorção é calculada em função da energia cinética do átomo incidente através da regra de ouro de Fermi. Os resultados, mostrando que a probabilidade de adsorção decai rapidamente acima de uma energia cinética característica, são interpretados fisicamente. / A new procedure that calculates sticking coefficients for atomic beams incident upon metallic surfaces is discussed. A model Hamiltonian describing the normal incidence of an ad-atom and its interaction with the conduction electrons of the adsorbate is introduced. The Hamiltonian accounts for two couplings: (1) the overlap between the atomic orbital and the metallic conduction states, allowing charge transfer between incident particle and adsorbate, and (2) the image potential associated with the ionized ad-atom. The electronic and nuclear parts of the model Hamiltonian are diagonalized separately, the former by renormalization group techniques and the second by numerical integration of the Schrödinger equation for the nuclear motion. Through the perturbative treatment, the first order corrections to the adiabatic approximation are presented. The results, showing that the sticking coefficient diminishes rapidly above a characteristic kinetic energy o£ the incident atom, are interpreted.
7

Open Quantum Systems : Effects in Interferometry, Quantum Computation, and Adiabatic Evolution

Åberg, Johan January 2005 (has links)
<p>The effects of open system evolution on single particle interferometry, quantum computation, and the adiabatic approximation are investigated.</p><p>Single particle interferometry: Three concepts concerning completely positive maps (CPMs) and trace preserving CPMs (channels), named subspace preserving (SP) CPMs, subspace local channels, and gluing of CPMs, are introduced. SP channels preserve probability weights on given orthogonal sum decompositions of the Hilbert space of a quantum system. Subspace locality determines what channels act locally with respect to such decompositions. Gluings are the possible total channels obtainable if two evolution devices, characterized by channels, act jointly on a superposition of a particle in their inputs. It is shown that gluings are not uniquely determined by the two channels. We determine all possible interference patterns in single particle interferometry for given channels acting in the interferometer paths. It is shown that the standard interferometric setup cannot distinguish all gluings, but a generalized setup can.</p><p>Quantum computing: The robustness of local and global adiabatic quantum search subject to decoherence in the instantaneous eigenbasis of the search Hamiltonian, is examined. In both the global and local search case the asymptotic time-complexity of the ideal closed case is preserved, as long as the Hamiltonian dynamics is present. In the case of pure decoherence, where the environment monitors the search Hamiltonian, it is shown that the local adiabatic quantum search performs as the classical search with scaling N, and that the global search scales like N<sup>3/2</sup> , where N is the list length. We consider success probabilities p<1 and prove bounds on the run-time with the same scaling as in the conditions for the p → 1 limit.</p><p>Adiabatic evolution: We generalize the adiabatic approximation to the case of open quantum systems in the joint limit of slow change and weak open system disturbances. </p>
8

Open Quantum Systems : Effects in Interferometry, Quantum Computation, and Adiabatic Evolution

Åberg, Johan January 2005 (has links)
The effects of open system evolution on single particle interferometry, quantum computation, and the adiabatic approximation are investigated. Single particle interferometry: Three concepts concerning completely positive maps (CPMs) and trace preserving CPMs (channels), named subspace preserving (SP) CPMs, subspace local channels, and gluing of CPMs, are introduced. SP channels preserve probability weights on given orthogonal sum decompositions of the Hilbert space of a quantum system. Subspace locality determines what channels act locally with respect to such decompositions. Gluings are the possible total channels obtainable if two evolution devices, characterized by channels, act jointly on a superposition of a particle in their inputs. It is shown that gluings are not uniquely determined by the two channels. We determine all possible interference patterns in single particle interferometry for given channels acting in the interferometer paths. It is shown that the standard interferometric setup cannot distinguish all gluings, but a generalized setup can. Quantum computing: The robustness of local and global adiabatic quantum search subject to decoherence in the instantaneous eigenbasis of the search Hamiltonian, is examined. In both the global and local search case the asymptotic time-complexity of the ideal closed case is preserved, as long as the Hamiltonian dynamics is present. In the case of pure decoherence, where the environment monitors the search Hamiltonian, it is shown that the local adiabatic quantum search performs as the classical search with scaling N, and that the global search scales like N3/2 , where N is the list length. We consider success probabilities p&lt;1 and prove bounds on the run-time with the same scaling as in the conditions for the p → 1 limit. Adiabatic evolution: We generalize the adiabatic approximation to the case of open quantum systems in the joint limit of slow change and weak open system disturbances.
9

Vintage models of spatial structural change

Westin, Lars January 1990 (has links)
In the study a class of multisector network models, suitable for simulation of the interaction between production, demand, trade, and infrastructure, is presented. A characteristic feature of the class is a vintage model of the production system. Hence, the rigidities in existing capacities and the temporary monopolies obtainable from investments in new capacity at favourable locations are emphasized.As special cases, the class contains models in the modelling traditions of "interregional computable general equilibriunT, Hspatial price equilibrium**, "interregional input-output" and transportation networks.On the demand side, a multihousehold spatial linear expenditure system is introduced. This allows for an endogenous representation of income effects of skill-differentiated labour.The models are represented by a set of complementarity problems. This facilitates a comparison of model properties and the choice of an appropriate solution algorithm.The study is mainly devoted to single period models. Such equilibrium models are interpreted as adiabatic approximations of processes in continuous time. A separation by the time scale of the processes and an application of the slaving principle should thus govern the choice of endogenous variables in the equilibrium formulation. / digitalisering@umu
10

Beyond the adiabatic model for the elastic scattering of composite nuclei

Summers, Neil Christopher January 2001 (has links)
No description available.

Page generated in 0.1533 seconds