• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electrocatalytic nanoeffect at gold nanoparticles

Wang, Ying January 2014 (has links)
Nanoelectrochemistry explores the differences in chemical behaviour at the nanoscale as compared to the macro-scale. This thesis is concerned with nanoelectrochemistry and aims to develop and apply novel experiments for the unambiguous identification of changed electrode kinetics at the nanoscale. This is challenging since electrochemical responses are controlled by diverse factors like enhanced mass transport and adsorption as well as electron transfer kinetics. A joint computational and experimental strategy is employed. Chapter 1, 2 and 3 cover essential introductory material and basic experimental details relevant to all experiment. Fuller descriptions and details are given in the following chapters as and when needed. Chapter 4 reports the development of an electrochemical characterization method, to achieve a fast and simple quantification of the average particle size and the number of nanoparticles deposited on a glassy carbon electrode. The method consists of surface area characterization by underpotential deposition of lead particles and the determination of the amount of gold from anodic stripping in HCl. This method is also proven to be effective by comparing the results with SEM measurements. Next, in chapter 5, a generic strategy combining computation and experimental approach is developed in order to study the electron transfer kinetics of gold nanoparticles. The modelling part considers the kinetics of the electrochemical process on the bulk materials for different regions in the electrode, that is, the substrate (glassy carbon) and the nanoparticles (gold). Comparison of experimental and theoretical results enables the detection of changes in the electrode kinetics at the nanoscale. This approach is applied into the electro-oxidations of nitrite and L-ascorbic acid for gold nanoparticles from 20 - 90 nm. In the former, analysing the system shows that no change in electron transfer kinetics is involved in the process, even though a decrease of the over-potential and an increase in the peak current are observed. But these changes reflect mass transport effects, not electrocatalysis. A case where an authentic enhanced electron transfer kinetic change occurs is shown for the ascorbic acid system. Finally, in chapter 6 , the above strategy is exploited further to apply a quantitative study of electron transfer kinetics for various sizes of gold nanoparticles in the oxygen reduction reaction system in sulphuric acid at 298 K. The latter is at the heart of energy transformation techniques (fuel cells, battery and so on). Compared with the electron transfer kinetics on macro gold electrodes, there is no change at gold nanoparticles from size 5 nm to 40 nm. However, in the presence of Pb(II), a strong enhancement of electron transfer kinetics is observed on 5 nm citrate capped gold nanoparticles for ORR. On the other hand, a significant decrease of electron transfer kinetics has been found for gold nanoparticles of size 2 nm for ORR. The latter observation of strong negative electrocatalysis is also observed for the hydrogen evolution reaction (HER). This represents the first report of such effects with the HER system. Overall the thesis has established a rigurous, theoretical basis for evaluating electrocatalysis in nanoparticulate system.
2

Magnetic field effects on electron transfer reactions: heterogeneous photoelectrochemical hydrogen evolution and homogeneous self exchange reaction

Lee, Heung Chan 01 May 2010 (has links)
Magnetic field effects (MFE) on electrochemical systems have been of interest to researchers for the past 60 years. MFEs on mass transport, such as magnetohydrodynamics and magnetic field gradients effects are reported, but MFEs on electron transfer kinetics have been rarely investigated. Magnetic modification of electrodes enhances electron transfer kinetics under conditions of high concentrations and low physical diffusion conditions, as shown by Leddy and coworkers. Magnetic microparticles embedded in an ion exchange polymer (e.g., Nafion) applied to electrode surfaces. Rates of electron transfer reactions to diffusing redox probes and to adsorbates are markedly enhanced. This work reports MFEs on hydrogen evolution on illuminated p-Si; MFEs on hydrogen evolution on noncatalytic electrodes; a model for MFEs on homogeneous self-exchange reactions; and a convolution based voltammetric method for film modified electrodes. First, a MFE on the photoelectrochemical hydrogen evolution reaction (HER) at p-Si semiconductors is demonstrated. The HER is an adsorbate reaction. Magnetic modification reduces the energetic cost of the HER by 400 - 500 mV as compared to Nafion modified electrodes and by 1200 mV as compared to unmodified p-Si. Magnetically modified p-Si achieves 6.2 % energy conversion efficiency. Second, from HER on noncatalytic electrodes, the MFE on photoelectrochemical cells arises from improved heterogeneous electron transfer kinetics. On glassy carbon electrodes, magnetic modification improves heterogeneous electron transfer rate constant, k₀,for HER 80,000 fold. Third, self exchange reaction rates are investigated under magnetic modification for various temperatures, outersphere redox probes, and magnetic particles. Arrhenius analyses of the rate constants collected from the experiments show a 30 - 40 % decrease in activation energy at magnetically modified electrodes. A kinetic model is established based on transition state theory. The model includes pre-polarization and electron nuclear spin polarization steps and characterizes a majority of the experimental results. Lastly, a convolution technique for modified with uniform films electrodes is developed and coded in Matlab (mathematical software) for simple and straightforward analysis of Nafion modified electrodes.
3

Modelling Stochasticity In Selected Biological Processes

Chaudhury, Srabanti 07 1900 (has links)
Biological processes at the cellular level take place in heterogeneous environments, and usually involve only a small number of molecules. They tend to exhibit strong time dependent fluctuations, as a result, and are, therefore, intrinsically stochastic. The present thesis describes some of the efforts I have made during the course of my research work to develop simple, analytically tractable models of a selection of biologically-inspired problems in which this kind of stochasticity is a central ingredient. These problems are: (i) single molecule enzyme activity (ii) intermittency in single enzymes, (iii) liquids crystal dynamics (iv) modulation of electron transfer kinetics during photosynthesis, and (v) anomalous polymer translocation dynamics. All of these problems can be defined in terms of quantity that changes randomly in time because of environmental fluctuations with broad distributions of relaxation times. In this thesis I show that a generalization of a model that describes simple Brownian Motion can be used to understand many of the dynamical aspects of these problems.

Page generated in 0.0723 seconds