• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Excitations avec texture de spin et de pseudospin dans le graphène / Spin and pseudospin textured excitations in graphene

Luo, Wenchen January 2014 (has links)
Résumé : Nous étudions dans cette thèse plusieurs propriétés du gaz d’électrons bidimensionnel (GE2D) dans le graphène et la bicouche de graphène (BG). Nous commençons par étudier la nature des excitations à une particule du GE2D dans le graphène près des facteurs de remplissage entiers dans les niveaux de Landau N [pas égal à] 0. Nous utilisons une approche de type Hartree-Fock (HF) pour comparer l’énergie de l’excitation d’une paire électron-trou à celle d’une paire skyrmion (SK)-antiskyrmion (ASK). Dans le graphène, les excitations SK et ASK sont des excitations chargées avec une texture de spin et/ou de pseudospin de vallée qui est quantifiée topologiquement. Nos calculs montrent que les paires SK-ASK sont les excitations chargées de plus basse énergie jusqu’au niveau de Landau |N| = 3. Notre approche permet en plus de calculer le domaine de couplage Zeeman pour lequel les paires SK-ASK sont les excitations de plus basse énergie et de déterminer comment l’énergie de ces paires est modifiée par les corrections d’écrantage. Le diagramme de phase du GE2D dans la bicouche de graphène a fait l’objet d’intenses recherches théoriques et expérimentales [8, 13, 15, 16], mais jusqu’à maintenant, seuls les états uniformes ont été considérés. Nous adaptons notre approche HF à l’étude des états non uniformes pour montrer que le GE2D dans la BG à remplissage ν = −1 dans le niveau de Landau N = 0 subit une série de transitions de phase lorsqu’un champ électrique perpendiculaire à la BG est appliqué. Nous étudions tout particulièrement les phases comportant une texture de pseudospin orbital soit un cristal de skyrmions et une phase spirale. Nous calculons les modes collectifs de ces phases ainsi que leur absorption électromagnétique. Nous poursuivons ensuite avec une étude des phases cristallines autour de certains remplissages entiers dans la BG. Le GE2D dans la bicouche de graphène a principalement été étudié dans le niveau de Landau N = 0. Comme dernier problème, nous étudions le diagramme de phase lorsqu’un nombre entier de niveaux de Landau est occupé dans les niveaux supérieurs |N| > 0. Alors que l’état fondamental du GE2D dans le graphène pour ces mêmes niveaux est un ferroaimant de Hall quantique (FHQ) avec une symétrie SU(2) pour le spin (en l’absence de couplage Zeeman) et le pseudospin de vallée, le GE2D dans la BG a plutôt un comportement FHQ de type Ising avec une symétrie Z[indice inférieur 2] à champ électrique nul. Cette différence de comportement a une grande influence sur la nature des transitions de phase possibles ainsi que sur celle des excitations topologiques. // Abstract : In this thesis, we study several properties of the two-dimensional electron gas (2DEG) in graphene and bilayer graphene. We first study the nature of the single-particle excitations in graphene near integer filling factors in Landau levels (LLs) N [not equal to] 0. We use a Hartree-Fock approach to compare the energy of an electron-hole excitation pair with that of a Skyrmion-antiskyrmion pair. In graphene, Skyrmions are charged excitations with a topological quantized spin and/or valley pseudo-spin texture. We give the range of Zeeman coupling for which Skyrmion-antiskyrmion has the lowest energy up to LL N = 3. Then we discuss how screening corrections modifies these results. The phase diagram of the 2DEG in bilayer graphene had been studied previously by a number of authors [8, 13, 15, 16] but only uniform states had been considered. Extending the Hartree-Fock approach to non-uniform states, we show that at filling factor ν = −1 in LL N = 0, the 2DEG goes through a series of phase transitions as the bias from an external electric field between two layers is increased. We study a crystal phase with orbital SK textures and a spiral state with the orbital pseudospin rotating in space. We compute the collective mode of these phases and their signatures in electromagnetic absorption experiments. We finally extend the Hartree-Fock approach to study the crystal states with valley or orbital textures near integer filling factors. The research on the 2DEG in bilayer graphene has been focussed almost exclusively in LL N = 0. As our last problem, we study the phase diagram at quarter and half fillings of the quartet of states in LLs |N| > 0. While the ground state of the 2DEG in graphene in |N| > 0 is a valley and spin quantum Hall ferromagnet with SU(2) symmetry in the absence of Zeeman coupling, the ground state in bilayer graphene is an Ising quantum Hall ferromagnet with a Z[subscript 2] valley symmetry at zero bias. We note that this change has important consequences on the nature of the transport properties and the single-particle excitations at integer fillings.
2

Superconductivity in two-dimensions from the Hubbard model to the Su-Schrieffer-Heeger model

Roy, Dipayan 06 August 2021 (has links)
We study unconventional superconductivity in two-dimensional systems. Unbiased numerical calculations within two-dimensional Hubbard models have found no evidence for long-range superconducting order. Most of the two-dimensional theories suggest that the superconducting state can be obtained by destabilizing an antiferromagnetic or spin-liquid insulating state. An antiferromagnet is a half-filled system because each site has one electron or hole. However, in anisotropic triangular lattices, numerical calculation finds pairing enhancement at quarter-filling but no long-range superconducting order. Many organic superconductors are dimerized in nature. Such a dimer lattice is effectively half-filled because each dimer has one electron or hole. Some theories suggest that magnetic fluctuation in such a system can give superconductivity. However, at zero temperature, we performed density matrix renormalization group (DMRG) calculations in such a system, and we find no superconducting long-range order. We also find that the antiferromagnetic order is not necessary to get a superconducting state. Failure in explaining superconductivity in two-dimensional systems suggests that only repulsive interactions between electrons are not sufficient, and other interactions are required. The most likely candidate is the electron-phonon interaction. However, existing theories of superconductivity emphasize either electron-electron or electron-phonon interactions, each of which tends to cancel the effect of the other. We present direct evidence from quantum Monte Carlo calculations of cooperative, as opposed to competing, effects of electron-electron and electron-phonon interactions within the frustrated Hubbard Hamiltonian, uniquely at the band-filling of one-quarter. Bond-coupled phonons and the onsite Hubbard U cooperatively reinforce d-wave superconducting pair-pair correlations at this filling while competing with one another at all other densities. Our work further gives new insight into how intertwined charge-order and superconductivity appear in real materials.

Page generated in 0.0544 seconds