• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • Tagged with
  • 14
  • 14
  • 10
  • 8
  • 7
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Residual Crashes and Injured Occupants with Lane Departure Prevention Systems

Riexinger, Luke E. 19 April 2021 (has links)
Every year, approximately 34,000 individuals are fatally injured in crashes on US roads [1]. These fatalities occur across many types of crash scenarios, each with its own causation factors. One way to prioritize research on a preventive technology is to compare the number of occupant fatalities relative to the total number of occupants involved in a crash scenario. Four crash modes are overrepresented among fatalities: single vehicle road departure crashes, control loss crashes, cross-centerline head-on crashes, and pedestrian/cyclist crashes [2]. Interestingly, three of these crash scenarios require the subject vehicle to depart from the initial lane of travel. Lane departure warning (LDW) systems track the vehicle lane position and can alert the driver through audible and haptic feedback before the vehicle crosses the lane line. Lane departure prevention (LDP) systems can perform an automatic steering maneuver to prevent the departure. Another method of prioritizing research is to determine factors common among the fatal crashes. In 2017, 30.4% of passenger vehicle crash fatalities involved a vehicle rollover [1]. Half of all fatal single vehicle road departure crashes resulted in a rollover yet only 12% of fatal multi-vehicle crashes involved a rollover [1]. These often occur after the driver has lost control of the vehicle and departed the road. Electronic stability control (ESC) can provide different braking to each wheel and allow the vehicle to maintain heading. While ESC is a promising technology, some rollover crashes still occur. Passive safety systems such as seat belts, side curtain airbags, and stronger roofs work to protect occupants during rollover crashes. Seat belts prevent occupants from moving inside the occupant compartment during the rollover and both seat belts and side curtain airbags can prevent occupants from being ejected from the vehicle. Stronger roofs ensure that the roof is not displaced during the rollover and the integrity of the occupant compartment is maintained to prevent occupant ejection. The focus of this dissertation is to evaluate the effectiveness of vehicle-based countermeasures, such as lane departure warning and electronic stability control, for preventing or mitigating single vehicle road departure crashes, cross-centerline head-on crashes, and single vehicle rollover crashes. This was accomplished by understanding how drivers respond to both road departure and cross-centerline events in real-world crashes. These driver models were used to simulate real crash scenarios with LDW/LDP systems to quantify their potential crash reduction. The residual crashes, which are not avoided with LDW/LDP systems or ESC, were analyzed to estimate the occupant injury outcome. For rollover crashes, a novel injury model was constructed that includes modern passive safety countermeasures such as seat belts, side curtain airbags, and stronger roofs. The results for road departure, head-on, and control loss rollover crashes were used to predict the number of crashes and injured occupants in the future. This work is important for identifying the residual crashes that require further research to reduce the number of injured crash occupants. / Doctor of Philosophy / Every year in the US, approximately 34,000 individuals are fatally injured in many different types of crashes. However, some crash types are more dangerous than other crash types. Drift-out-of-lane (DrOOL) road departure crashes, control loss road departure crashes, head-on crashes, and pedestrian crashes are more likely to result in an occupant fatality than other crash modes. In three of these more dangerous crash types, the vehicle departs from the lane before the crash occurs. Lane departure warning (LDW) systems can detect when the vehicle is about to cross the lane line and notify the driver with beeping or vibrating the steering wheel. A different system, called lane departure prevention (LDP), can provide automatic steering to prevent the vehicle from leaving the lane or return lane. In control loss crashes, the vehicle's motion is in a different direction than the vehicle's heading. During control loss, it is easier for the vehicle to roll over which is very dangerous. Electronic stability control (ESC) can prevent control loss by applying selective braking to each tire to keep the vehicle's motion in the same direction as the vehicle's heading. If a rollover still occurs, vehicles are equipped with passive safety systems and designs such as seat belts, side curtain airbags, and stronger roofs to protect the people inside. Seat belts can prevent occupants from striking the vehicle interior during the rollover and both seat belts and side curtain airbags can prevent occupants from being ejected from the vehicle. Stronger roofs ensure that the roof is not displaced during the rollover to prevent occupants from being ejected from the vehicle. The focus of this dissertation is to estimate how many crashes LDW, LDP, and ESC systems could prevent. This was accomplished by understanding how drivers respond after leaving their lane in real crashes. Then, these real crash scenarios were simulated with an LDW or LDP system to estimate how many crashes were prevented. The occupants of residual crashes, which were not prevented by the simulated systems, were analyzed to estimate the number of occupants with at least one moderate injury. Understanding which crashes and injuries that were not prevented with this technology can be used to decide where future research should occur to prevent more fatalities in road departure, head-on and control loss crashes.
12

Vliv vybraných elektronických systémů podvozku na jízdní dynamiku vozidla / Impact of Chosen Chassis Electronic Systems on Driving Dynamics of a Vehicle

Schejbal, Jan January 2010 (has links)
This work deals with the impact of selected electronic chassis systems of modern vehicles, their driving dynamics. The general aim of this work is to create the basic methodology for assessing casualties of the influence of these systems. The thesis is describing functions and effects antilock and stability systems on vehicle dynamics. Below are possible methods and systems for determining the influence on accident plot. As part of the study was performed measuring the impact of anti-lock system on the vehicle. The result of this work is the basic methodology to the analysis of road accidents involving vehicles with electronic chassis systems.
13

Možnosti zjišťování vlivu elektronických stabilizačních systémů podvozku na jízdní dynamiku vozidla / Options for the Determination of the Influence of Electronic Stabilization Systems of the Chassis on the Driving Dynamics of a Vehicle

Bilík, Martin January 2011 (has links)
This diploma thesis deals with the possibilities of determining the influence of electronic stability systems on the chassis of the vehicle driving dynamics. In the introductory section is made theoretical analysis of road vehicle dynamics. Further description is made of some stabilization systems and situations and how to solve them by using these systems. Chapter 6.2.1 describes the methodology of practical experiment, which can determine influence of the stability system of the vehicle chassis on driving dynamics. The next chapter describes an experiment conducted and interpreted the measured values. The penultimate chapter is a simulation of this experiment using simulation software Virtual Crash. The last chapter is an evaluation of the experiment and compares the results with simulation programs using the same input conditions. The conclusion summarizes the results of this work.
14

Development of a Heavy Truck Vehicle Dynamics Model using Trucksim and Model Based Design of ABS and ESC Controllers in Simulink

Rao, Shreesha Yogish 11 July 2013 (has links)
No description available.

Page generated in 0.1461 seconds