• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 10
  • 10
  • 10
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effect of Lane Departure Warning Systems on Cross-Centerline Crashes

Holmes, David Alexander 16 May 2018 (has links)
Cross-centerline crashes occur rarely in the United States but are especially severe. This type of crash is characterized by one vehicle departing over a centerline and encountering a vehicle traveling in the opposite direction. In recent years, automakers have started developing and implementing lane departure warning (LDW) on newer vehicles. This system provides the potential to reduce or significantly impact the frequency of cross-centerline crashes. The objective of this thesis was to estimate the potential crash and injury benefits of a LDW system if installed on every vehicle in the US fleet. This research includes the following 1) a characterization of cross-centerline crashes in the United States today with current and future prevention methods, 2) a reconstruction methodology used for all crashes including rollovers and heavy vehicles, and 3) a simulation model and approach method used to estimate potential benefits of LDW systems on cross-centerline crashes. Cross over to left crashes account for only 4% of non-junction non-interchange crashes but account for 44% of serious injury crashes of the same type. As part of this research, 42 cross-centerline crashes were reconstructed and simulated as if they had a LDW system installed. Accounting for driver capability to react to a LDW alert, crash reduction benefits ranged from 22 – 30%.Using injury risk curves, the probability of experiencing a MAIS2+ injury in a cross-centerline crash was reduced by 29% when using a LDW system. / Master of Science / Cross over to left crashes occur rarely but are typically very severe. Cross over to left crashes include wrong side of road crashes, cross over to left due to loss of control, and cross over to left over centerline crashes, also known as cross-centerline crashes. Cross-centerline crashes are typically very severe due to the high closing speeds of both vehicles. Lane departure warning (LDW) is a safety system developed by auto manufacturers designed to help drivers stay in their travel lane. Upon leaving your lane without using a turn signal, a LDW system will provide an alert to warn you to stay in your lane. While LDW systems have been found to be effective for preventing road departure crashes, there have been few studies on their effectiveness for preventing cross-centerline crashes. The research objective of this thesis was to estimate the number of crashes in the United States that would be avoided if every vehicle was equipped with a LDW system. It was also of interest to determine the number of front-row occupants who would not experience a greater than moderate level of injury (MAIS2+) with a LDW system installed. To form the dataset, 42 crashes were initially selected, reconstructed, and simulated as if the encroaching vehicle had a LDW system installed. The speed profile of the vehicle was constructed using crash simulation software and an approach model in order to predict the vehicle speed prior to the crash. Driver capability to react to a LDW warning was also accounted for resulting in a range of benefits. With a LDW system installed, 22- 30% of cross-centerline crashes would be avoided. The probability of experiencing a MAIS2+ injury was also reduced by 29% when a LDW system was installed.
2

Modeling and Simulation of Lane Keeping Support System Using Hybrid Petri Nets

Padilla, Carmela Angeline C. 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In the past decades, the rapid innovation of technology has greatly affected the automotive industry. However, every innovation has always been paired with safety risks that needs to be quickly addressed. This is where Petri nets (PNs) have come into the picture and have been used to model complex systems for different purposes, such as production management, traffic flow estimation and the introduction of new car features collectively known as, Adaptive Driver Assistance Systems (ADAS). Since most of these systems include both discrete and continuous dynamics, the Hybrid Petri net (HPN) model is an essential tool to model these. The objective of this thesis is to develop, analyze and simulate a lane keeping support system using an HPN model. Chapter 1 includes a brief summary of the specific ADAS used, lane departure warning and lane keeping assist systems and then related work on PNs is mentioned. Chapter 2 provides a background on Petri nets. In chapter 3, we develop a discrete PN model first, then we integrate continuous dynamics to extend it to a HPN model that combines the functionalities of the two independent ADAS systems. Several scenarios are introduced to explain the expected model behavior. Chapter 4 presents the analysis and simulation results obtained on the final model. Chapter 5 provides a summary for the work done and discusses future work.
3

A Novel Lightweight Lane Departure Warning System Based on Computer Vision for Improving Road Safety

Chen, Yue 14 May 2021 (has links)
With the rapid improvement of the Advanced Driver Assistant System (ADAS), autonomous driving has become one of the most common hot topics in recent years. While driving, many technologies related to autonomous driving choose to use the sensors installed on the vehicle to collect the information of road status and the environment outside. This aims to warn the driver to perceive the potential danger in the fastest time, which has become the focus of autonomous driving in recent years. Although autonomous driving brings plenty of conveniences to people, the safety of it is still facing difficulties. During driving, even the experienced driver can not guarantee focus on the status of the road all the time. Thus, lane departure warning system (LDWS) becomes developed. The purpose of LDWS is to determine whether the vehicle is in the safe driving area. If the vehicle is out of this area, LDWS will detect it and alert the driver by the sensors, such as sound and vibration, in order to make the driver back to the safe driving area. This thesis proposes a novel lightweight LDWS model LEHA, which divides the entire LDWS into three stages: image preprocessing, lane detection, and lane departure recognition. Different from the deep learning methods of LDWS, our LDWS model LEHA can achieve high accuracy and efficiency by relying only on simple hardware. The image preprocessing stage aims to process the original road image to remove the noise which is irrelevant to the detection result. In this stage, we apply a novel algorithm of grayscale preprocessing to convert the road image to a grayscale image, which removes the color of it. Then, we design a binarization method to greatly extract the lane lines from the background. A newly-designed image smoothing is added to this stage to reduce most of the noise, which improves the accuracy of the following lane detection stage. After obtaining the processed image, the lane detection stage is applied to detect and mark the lane lines. We use region of interest (ROI) to remove the irrelevant parts of the road image to reduce the detection time. After that, we introduce the Canny edge detection method, which aims to extract the edges of the lane lines. The last step of LDWS in the lane detection stage is a novel Hough transform method, the purpose of it is to detect the position of the lane and mark it. Finally, the lane departure recognition stage is used to calculate the deviation distance between the vehicle and the centerline of the lane to determine whether the warning needs to turn on. In the last part of this paper, we present the experiment results which show the comparison results of different lane conditions. We do the statistic of the proposed LDWS accuracy in terms of detection and departure. The detection rate of our proposed LDWS is 98.2% and the departure rate of it is 99.1%. The average processing time of our proposed LDWS is 20.01 x 10⁻³s per image.
4

Residual Crashes and Injured Occupants with Lane Departure Prevention Systems

Riexinger, Luke E. 19 April 2021 (has links)
Every year, approximately 34,000 individuals are fatally injured in crashes on US roads [1]. These fatalities occur across many types of crash scenarios, each with its own causation factors. One way to prioritize research on a preventive technology is to compare the number of occupant fatalities relative to the total number of occupants involved in a crash scenario. Four crash modes are overrepresented among fatalities: single vehicle road departure crashes, control loss crashes, cross-centerline head-on crashes, and pedestrian/cyclist crashes [2]. Interestingly, three of these crash scenarios require the subject vehicle to depart from the initial lane of travel. Lane departure warning (LDW) systems track the vehicle lane position and can alert the driver through audible and haptic feedback before the vehicle crosses the lane line. Lane departure prevention (LDP) systems can perform an automatic steering maneuver to prevent the departure. Another method of prioritizing research is to determine factors common among the fatal crashes. In 2017, 30.4% of passenger vehicle crash fatalities involved a vehicle rollover [1]. Half of all fatal single vehicle road departure crashes resulted in a rollover yet only 12% of fatal multi-vehicle crashes involved a rollover [1]. These often occur after the driver has lost control of the vehicle and departed the road. Electronic stability control (ESC) can provide different braking to each wheel and allow the vehicle to maintain heading. While ESC is a promising technology, some rollover crashes still occur. Passive safety systems such as seat belts, side curtain airbags, and stronger roofs work to protect occupants during rollover crashes. Seat belts prevent occupants from moving inside the occupant compartment during the rollover and both seat belts and side curtain airbags can prevent occupants from being ejected from the vehicle. Stronger roofs ensure that the roof is not displaced during the rollover and the integrity of the occupant compartment is maintained to prevent occupant ejection. The focus of this dissertation is to evaluate the effectiveness of vehicle-based countermeasures, such as lane departure warning and electronic stability control, for preventing or mitigating single vehicle road departure crashes, cross-centerline head-on crashes, and single vehicle rollover crashes. This was accomplished by understanding how drivers respond to both road departure and cross-centerline events in real-world crashes. These driver models were used to simulate real crash scenarios with LDW/LDP systems to quantify their potential crash reduction. The residual crashes, which are not avoided with LDW/LDP systems or ESC, were analyzed to estimate the occupant injury outcome. For rollover crashes, a novel injury model was constructed that includes modern passive safety countermeasures such as seat belts, side curtain airbags, and stronger roofs. The results for road departure, head-on, and control loss rollover crashes were used to predict the number of crashes and injured occupants in the future. This work is important for identifying the residual crashes that require further research to reduce the number of injured crash occupants. / Doctor of Philosophy / Every year in the US, approximately 34,000 individuals are fatally injured in many different types of crashes. However, some crash types are more dangerous than other crash types. Drift-out-of-lane (DrOOL) road departure crashes, control loss road departure crashes, head-on crashes, and pedestrian crashes are more likely to result in an occupant fatality than other crash modes. In three of these more dangerous crash types, the vehicle departs from the lane before the crash occurs. Lane departure warning (LDW) systems can detect when the vehicle is about to cross the lane line and notify the driver with beeping or vibrating the steering wheel. A different system, called lane departure prevention (LDP), can provide automatic steering to prevent the vehicle from leaving the lane or return lane. In control loss crashes, the vehicle's motion is in a different direction than the vehicle's heading. During control loss, it is easier for the vehicle to roll over which is very dangerous. Electronic stability control (ESC) can prevent control loss by applying selective braking to each tire to keep the vehicle's motion in the same direction as the vehicle's heading. If a rollover still occurs, vehicles are equipped with passive safety systems and designs such as seat belts, side curtain airbags, and stronger roofs to protect the people inside. Seat belts can prevent occupants from striking the vehicle interior during the rollover and both seat belts and side curtain airbags can prevent occupants from being ejected from the vehicle. Stronger roofs ensure that the roof is not displaced during the rollover to prevent occupants from being ejected from the vehicle. The focus of this dissertation is to estimate how many crashes LDW, LDP, and ESC systems could prevent. This was accomplished by understanding how drivers respond after leaving their lane in real crashes. Then, these real crash scenarios were simulated with an LDW or LDP system to estimate how many crashes were prevented. The occupants of residual crashes, which were not prevented by the simulated systems, were analyzed to estimate the number of occupants with at least one moderate injury. Understanding which crashes and injuries that were not prevented with this technology can be used to decide where future research should occur to prevent more fatalities in road departure, head-on and control loss crashes.
5

Multi-viewpoint lane detection with applications in driver safety systems

Borkar, Amol 19 December 2011 (has links)
The objective of this dissertation is to develop a Multi-Camera Lane Departure Warning (MCLDW) system and a framework to evaluate it. A Lane Departure Warning (LDW) system is a safety feature that is included in a few luxury automobiles. Using a single camera, it performs the task of informing the driver if a lane change is imminent. The core component of an LDW system is a lane detector, whose objective is to find lane markers on the road. Therefore, we start this dissertation by explaining the requirements of an ideal lane detector, and then present several algorithmic implementations that meet these requirements. After selecting the best implementation, we present the MCLDW methodology. Using a multi-camera setup, MCLDW system combines the detected lane marker information from each camera's view to estimate the immediate distance between the vehicle and the lane marker, and signals a warning if this distance is under a certain threshold. Next, we introduce a procedure to create ground truth and a database of videos which serve as the framework for evaluation. Ground truth is created using an efficient procedure called Time-Slicing that allows the user to quickly annotate the true locations of the lane markers in each frame of the videos. Subsequently, we describe the details of a database of driving videos that has been put together to help establish a benchmark for evaluating existing lane detectors and LDW systems. Finally, we conclude the dissertation by citing the contributions of the research and discussing the avenues for future work.
6

Crash Prediction and Collision Avoidance using Hidden Markov Model

Prabu, Avinash 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Automotive technology has grown from strength to strength in the recent years. The main focus of research in the near past and the immediate future are autonomous vehicles. Autonomous vehicles range from level 1 to level 5, depending on the percentage of machine intervention while driving. To make a smooth transition from human driving and machine intervention, the prediction of human driving behavior is critical. This thesis is a subset of driving behavior prediction. The objective of this thesis is to predict the possibility of crash and implement an appropriate active safety system to prevent the same. The prediction of crash requires data of transition between lanes, and speed ranges. This is achieved through a variation of hidden Markov model. With the crash prediction and analysis of the Markov models, the required ADAS system is activated. The above concept is divided into sections and an algorithm was developed. The algorithm is then scripted into MATLAB for simulation. The results of the simulation is recorded and analyzed to prove the idea.
7

Drivers’ reliance on lane keeping assistance systems as a function of the level of assistance

Popken, Anke 28 April 2010 (has links) (PDF)
Fahrerassistenzsysteme werden zunehmend in Fahrzeuge eingebaut mit dem Ziel, den Fahrer beim Fahren zu unterstützen, Fahrfehler zu vermeiden und damit die Fahrsicherheit zu erhöhen. Derzeit sind häufig Systeme im Einsatz, die den Fahrer vor bestimmten Sicherheitsrisiken warnen (z.B. vor einem unbeabsichtigten Verlassen der Fahrspur). Der Trend geht aber hin zu Systemen, die stärker ins Fahrgeschehen eingreifen und somit Teile der Fahraufgabe automatisieren (z.B. selbständig die Spurhaltung des Fahrzeugs übernehmen). Aus der Forschung zur Mensch-Maschine Interaktion ist jedoch bekannt, dass Automatisierung nicht zwangsläufig zur Erhöhung von Sicherheit führt, sondern dass sie vielmehr auch unerwünschte Nebeneffekte für Performanz und Sicherheit mit sich bringen kann in dem Maße, wie Menschen an die veränderten Aufgabenanforderungen adaptieren. Im Straßenverkehr wird insbesondere befürchtet, dass Fahrer sich zu stark auf Fahrerassistenzsysteme verlassen, sich teilweise aus der Fahraufgabe zurückziehen („abschalten“) und ihre Aufmerksamkeit fahrfremden Dingen widmen. Dies kann unter Umständen dazu führen, dass Fahrer im Falle von Systemfehlern oder –ausfällen nicht mehr in der Lage sind rechtzeitig und angemessen einzugreifen bzw. die Kontrolle über das Fahrzeug zu übernehmen. Ziel der Dissertation war es zu untersuchen, inwieweit sich die Involviertheit von Fahrern in die Fahraufgabe verändert je stärker sie durch ein Assistenzsystem unterstützt werden (d.h., je stärker das System Teile der Fahraufgabe automatisiert). Um dies zu untersuchen wurden zwei theoretische Konzepte herangezogen: a) das Verlassen der Fahrer (auf ein System) und b) das Situationsbewusstsein der Fahrer. Basierend auf einer umfassenden Analyse der Forschungsliteratur zum Thema Automatisierung wurde ein theoretisches Rahmenmodell entwickelt, welches Veränderungen in der Involviertheit des Fahrers in die Fahraufgabe auf menschliche Adaptationsprozesse auf verschiedenen Ebenen zurückführt, die sich in Folge der veränderten Aufgaben­anforderungen durch zunehmende Automatisierung ergeben. Dazu zählen Veränderungen in Einstellungen, sowie in kognitiven, energetischen, und motivationalen Prozessen. Um Veränderungen in diesen Prozessen zu untersuchen, wurde eine Vielzahl an objektiven und subjektiven Maßen erhoben. Hauptgegenstand der Dissertation ist eine umfangreiche Fahrsimulatorstudie im Fahrsimulator mit Bewegungsplattform bei VTI (Swedish National Road and Transport Research Institute) in Linköping, Schweden. Dabei kamen zwei Querführungsassistenzsysteme (ein Heading Control System und ein Lane Departure Warning System) zum Einsatz, die den Fahrer in unterschiedlichem Maße bei der Spurhaltung unterstützten. Im Gegensatz zu einem Großteil der bisherigen Studien wurden prozessorientierte Performanzmaße zur Erfassung des Verlassens der Fahrer auf die Assistenzsysteme und des Situationsbewusstseins der Fahrer verwendet. Das Verlassen der Fahrer auf die Querführungsassistenzsysteme wurde durch Blickverhaltensmaße über die Bereitschaft der Fahrer erfasst, ihre visuelle Aufmerksamkeit von der Straße ab hin zu einer Zweitaufgabe im Fahrzeuginnenraum zu wenden. Zur Messung des Situationsbewusstseins der Fahrer wurden Fahrverhaltensmaße herangezogen welche als Indikator für die Schnelligkeit und Abruptheit der Reaktionen der Fahrer auf unerwartete kritische Fahrsituationen dienten. Ein Hauptbefund der Dissertation war, dass die Fahrer sich signifikant im Ausmaß ihres Verlassens auf einen hohen Grad an Assistenz unterschieden. Diese interindividuelle Varianz im Verlassen der Fahrer auf einen hohen Grad an Assistenz konnte am besten durch das Vertrauen der Fahrer in das Querführungsassistenzsystem und ihr Aktivierungsniveau erklärt werden: Je höher das Vertrauen der Fahrer in das System und je geringer ihr Aktivierungsniveau, desto stärker verließen sie sich auf das System. Individuelle Fahrermerkmale (Fahrstil) erklärten einen signifikanten Anteil der Varianz im Vertrauen der Fahrer in die Spurhalteassistenzsysteme. (ersetzt wegen neuem Herausgeber) / Advanced driver assistance systems are increasingly built in vehicles with the aim to support drivers while driving, to reduce driver errors and thereby to increase traffic safety. At present, these systems are often designed to warn drivers of specific safety risks (e.g., of an imminent departure from the driving lane). However, there is a trend towards systems that more strongly intervene in driving and that hence, automate parts of the driving task (e.g., autonomously keep the vehicle within the driving lane). However, research on human-machine interaction has shown that automation does not necessarily increase safety, but that it may also lead to unanticipated side effects on performance and safety to the extent that humans adapt to the changing task demands. A major concern in road traffic is that drivers rely too heavily on driver assistance systems, become less actively involved in the driving task, and divert their attention to things unrelated to driving. Thus, in the case of system malfunctions or failures, drivers possibly may not be prepared to intervene timely and accordingly and to regain control over the vehicle, respectively. The aim of this dissertation was to investigate changes in drivers’ active engagement in the driving task as a function of the degree to which they are supported by a driver assistance system (i.e., as a function of the degree to which the system automates the driving task). Drivers’ active task engagement was studied by referring to two theoretical concepts: a) drivers’ reliance (on a system) and b) drivers’ situation awareness. Based on an extensive review of previous research on automation, a conceptual theoretical framework was developed that links changes in operators’ active task engagement to human adaptation processes on different levels in response to the changing task demands due to automation. Among them are changes in human attitudes as well as in cognitive, motivational and energetic processes. In order to determine the relative influence of these processes, a range of objective and subjective measures was collected. The essential part of the dissertation is an extensive driving simulator study in an advanced moving-base driving simulator at VTI (Swedish National Road and Transport Research Institute) in Linköping, Sweden. Two lateral support systems (a Heading Control system and a Lane Departure Warning system) were implemented which assisted drivers to different degrees in lane keeping. Contrary to most previous automation studies, drivers’ reliance on the lane keeping assistance systems and their situation awareness were studied by using process-oriented performance-based measures. Drivers’ reliance on the lane keeping assistance systems was assessed by eye glance behaviour measures indicating drivers’ preparedness to allocate their visual attention away from the road scene to an in-vehicle secondary task. Drivers’ situation awareness was assessed by behavioural measures of the latency and magnitude of drivers’ initial reactions to unexpected critical driving situations. A major finding of the study was that drivers differed significantly in their reliance on a high level of lane keeping assistance. This interindividual variance in drivers’ reliance on higher-level assistance could be best explained by drivers’ trust in the system and their energetic arousal: The greater drivers’ trust in the system and the lower their arousal, the more did they rely on the system. Individual driver variables (driving style) explained a significant proportion of the variance in drivers’ trust in the lane keeping assistance systems. (replaced because a new publisher)
8

Drivers’ reliance on lane keeping assistance systems as a function of the level of assistance

Popken, Anke 03 May 2010 (has links) (PDF)
Advanced driver assistance systems are increasingly built in vehicles with the aim to support drivers while driving, to reduce driver errors and thereby to increase traffic safety. At present, these systems are often designed to warn drivers of specific safety risks (e.g., of an imminent departure from the driving lane). However, there is a trend towards systems that more strongly intervene in driving and that hence, automate parts of the driving task (e.g., autonomously keep the vehicle within the driving lane). However, research on human-machine interaction has shown that automation does not necessarily increase safety, but that it may also lead to unanticipated side effects on performance and safety to the extent that humans adapt to the changing task demands. A major concern in road traffic is that drivers rely too heavily on driver assistance systems, become less actively involved in the driving task, and divert their attention to things unrelated to driving. Thus, in the case of system malfunctions or failures, drivers possibly may not be prepared to intervene timely and accordingly and to regain control over the vehicle, respectively. The aim of this dissertation was to investigate changes in drivers’ active engagement in the driving task as a function of the degree to which they are supported by a driver assistance system (i.e., as a function of the degree to which the system automates the driving task). Drivers’ active task engagement was studied by referring to two theoretical concepts: a) drivers’ reliance (on a system) and b) drivers’ situation awareness. Based on an extensive review of previous research on automation, a conceptual theoretical framework was developed that links changes in operators’ active task engagement to human adaptation processes on different levels in response to the changing task demands due to automation. Among them are changes in human attitudes as well as in cognitive, motivational and energetic processes. In order to determine the relative influence of these processes, a range of objective and subjective measures was collected. The essential part of the dissertation is an extensive driving simulator study in an advanced moving-base driving simulator at VTI (Swedish National Road and Transport Research Institute) in Linköping, Sweden. Two lateral support systems (a Heading Control system and a Lane Departure Warning system) were implemented which assisted drivers to different degrees in lane keeping. Contrary to most previous automation studies, drivers’ reliance on the lane keeping assistance systems and their situation awareness were studied by using process-oriented performance-based measures. Drivers’ reliance on the lane keeping assistance systems was assessed by eye glance behaviour measures indicating drivers’ preparedness to allocate their visual attention away from the road scene to an in-vehicle secondary task. Drivers’ situation awareness was assessed by behavioural measures of the latency and magnitude of drivers’ initial reactions to unexpected critical driving situations. A major finding of the study was that drivers differed significantly in their reliance on a high level of lane keeping assistance. This interindividual variance in drivers’ reliance on higher-level assistance could be best explained by drivers’ trust in the system and their energetic arousal: The greater drivers’ trust in the system and the lower their arousal, the more did they rely on the system. Individual driver variables (driving style) explained a significant proportion of the variance in drivers’ trust in the lane keeping assistance systems. / Fahrerassistenzsysteme werden zunehmend in Fahrzeuge eingebaut mit dem Ziel, den Fahrer beim Fahren zu unterstützen, Fahrfehler zu vermeiden und damit die Fahrsicherheit zu erhöhen. Derzeit sind häufig Systeme im Einsatz, die den Fahrer vor bestimmten Sicherheitsrisiken warnen (z.B. vor einem unbeabsichtigten Verlassen der Fahrspur). Der Trend geht aber hin zu Systemen, die stärker ins Fahrgeschehen eingreifen und somit Teile der Fahraufgabe automatisieren (z.B. selbständig die Spurhaltung des Fahrzeugs übernehmen). Aus der Forschung zur Mensch-Maschine Interaktion ist jedoch bekannt, dass Automatisierung nicht zwangsläufig zur Erhöhung von Sicherheit führt, sondern dass sie vielmehr auch unerwünschte Nebeneffekte für Performanz und Sicherheit mit sich bringen kann in dem Maße, wie Menschen an die veränderten Aufgabenanforderungen adaptieren. Im Straßenverkehr wird insbesondere befürchtet, dass Fahrer sich zu stark auf Fahrerassistenzsysteme verlassen, sich teilweise aus der Fahraufgabe zurückziehen („abschalten“) und ihre Aufmerksamkeit fahrfremden Dingen widmen. Dies kann unter Umständen dazu führen, dass Fahrer im Falle von Systemfehlern oder –ausfällen nicht mehr in der Lage sind rechtzeitig und angemessen einzugreifen bzw. die Kontrolle über das Fahrzeug zu übernehmen. Ziel der Dissertation war es zu untersuchen, inwieweit sich die Involviertheit von Fahrern in die Fahraufgabe verändert je stärker sie durch ein Assistenzsystem unterstützt werden (d.h., je stärker das System Teile der Fahraufgabe automatisiert). Um dies zu untersuchen wurden zwei theoretische Konzepte herangezogen: a) das Verlassen der Fahrer (auf ein System) und b) das Situationsbewusstsein der Fahrer. Basierend auf einer umfassenden Analyse der Forschungsliteratur zum Thema Automatisierung wurde ein theoretisches Rahmenmodell entwickelt, welches Veränderungen in der Involviertheit des Fahrers in die Fahraufgabe auf menschliche Adaptationsprozesse auf verschiedenen Ebenen zurückführt, die sich in Folge der veränderten Aufgaben­anforderungen durch zunehmende Automatisierung ergeben. Dazu zählen Veränderungen in Einstellungen, sowie in kognitiven, energetischen, und motivationalen Prozessen. Um Veränderungen in diesen Prozessen zu untersuchen, wurde eine Vielzahl an objektiven und subjektiven Maßen erhoben. Hauptgegenstand der Dissertation ist eine umfangreiche Fahrsimulatorstudie im Fahrsimulator mit Bewegungsplattform bei VTI (Swedish National Road and Transport Research Institute) in Linköping, Schweden. Dabei kamen zwei Querführungsassistenzsysteme (ein Heading Control System und ein Lane Departure Warning System) zum Einsatz, die den Fahrer in unterschiedlichem Maße bei der Spurhaltung unterstützten. Im Gegensatz zu einem Großteil der bisherigen Studien wurden prozessorientierte Performanzmaße zur Erfassung des Verlassens der Fahrer auf die Assistenzsysteme und des Situationsbewusstseins der Fahrer verwendet. Das Verlassen der Fahrer auf die Querführungsassistenzsysteme wurde durch Blickverhaltensmaße über die Bereitschaft der Fahrer erfasst, ihre visuelle Aufmerksamkeit von der Straße ab hin zu einer Zweitaufgabe im Fahrzeuginnenraum zu wenden. Zur Messung des Situationsbewusstseins der Fahrer wurden Fahrverhaltensmaße herangezogen welche als Indikator für die Schnelligkeit und Abruptheit der Reaktionen der Fahrer auf unerwartete kritische Fahrsituationen dienten. Ein Hauptbefund der Dissertation war, dass die Fahrer sich signifikant im Ausmaß ihres Verlassens auf einen hohen Grad an Assistenz unterschieden. Diese interindividuelle Varianz im Verlassen der Fahrer auf einen hohen Grad an Assistenz konnte am besten durch das Vertrauen der Fahrer in das Querführungsassistenzsystem und ihr Aktivierungsniveau erklärt werden: Je höher das Vertrauen der Fahrer in das System und je geringer ihr Aktivierungsniveau, desto stärker verließen sie sich auf das System. Individuelle Fahrermerkmale (Fahrstil) erklärten einen signifikanten Anteil der Varianz im Vertrauen der Fahrer in die Spurhalteassistenzsysteme.
9

Drivers’ reliance on lane keeping assistance systems as a function of the level of assistance

Popken, Anke 08 July 2009 (has links)
Fahrerassistenzsysteme werden zunehmend in Fahrzeuge eingebaut mit dem Ziel, den Fahrer beim Fahren zu unterstützen, Fahrfehler zu vermeiden und damit die Fahrsicherheit zu erhöhen. Derzeit sind häufig Systeme im Einsatz, die den Fahrer vor bestimmten Sicherheitsrisiken warnen (z.B. vor einem unbeabsichtigten Verlassen der Fahrspur). Der Trend geht aber hin zu Systemen, die stärker ins Fahrgeschehen eingreifen und somit Teile der Fahraufgabe automatisieren (z.B. selbständig die Spurhaltung des Fahrzeugs übernehmen). Aus der Forschung zur Mensch-Maschine Interaktion ist jedoch bekannt, dass Automatisierung nicht zwangsläufig zur Erhöhung von Sicherheit führt, sondern dass sie vielmehr auch unerwünschte Nebeneffekte für Performanz und Sicherheit mit sich bringen kann in dem Maße, wie Menschen an die veränderten Aufgabenanforderungen adaptieren. Im Straßenverkehr wird insbesondere befürchtet, dass Fahrer sich zu stark auf Fahrerassistenzsysteme verlassen, sich teilweise aus der Fahraufgabe zurückziehen („abschalten“) und ihre Aufmerksamkeit fahrfremden Dingen widmen. Dies kann unter Umständen dazu führen, dass Fahrer im Falle von Systemfehlern oder –ausfällen nicht mehr in der Lage sind rechtzeitig und angemessen einzugreifen bzw. die Kontrolle über das Fahrzeug zu übernehmen. Ziel der Dissertation war es zu untersuchen, inwieweit sich die Involviertheit von Fahrern in die Fahraufgabe verändert je stärker sie durch ein Assistenzsystem unterstützt werden (d.h., je stärker das System Teile der Fahraufgabe automatisiert). Um dies zu untersuchen wurden zwei theoretische Konzepte herangezogen: a) das Verlassen der Fahrer (auf ein System) und b) das Situationsbewusstsein der Fahrer. Basierend auf einer umfassenden Analyse der Forschungsliteratur zum Thema Automatisierung wurde ein theoretisches Rahmenmodell entwickelt, welches Veränderungen in der Involviertheit des Fahrers in die Fahraufgabe auf menschliche Adaptationsprozesse auf verschiedenen Ebenen zurückführt, die sich in Folge der veränderten Aufgaben­anforderungen durch zunehmende Automatisierung ergeben. Dazu zählen Veränderungen in Einstellungen, sowie in kognitiven, energetischen, und motivationalen Prozessen. Um Veränderungen in diesen Prozessen zu untersuchen, wurde eine Vielzahl an objektiven und subjektiven Maßen erhoben. Hauptgegenstand der Dissertation ist eine umfangreiche Fahrsimulatorstudie im Fahrsimulator mit Bewegungsplattform bei VTI (Swedish National Road and Transport Research Institute) in Linköping, Schweden. Dabei kamen zwei Querführungsassistenzsysteme (ein Heading Control System und ein Lane Departure Warning System) zum Einsatz, die den Fahrer in unterschiedlichem Maße bei der Spurhaltung unterstützten. Im Gegensatz zu einem Großteil der bisherigen Studien wurden prozessorientierte Performanzmaße zur Erfassung des Verlassens der Fahrer auf die Assistenzsysteme und des Situationsbewusstseins der Fahrer verwendet. Das Verlassen der Fahrer auf die Querführungsassistenzsysteme wurde durch Blickverhaltensmaße über die Bereitschaft der Fahrer erfasst, ihre visuelle Aufmerksamkeit von der Straße ab hin zu einer Zweitaufgabe im Fahrzeuginnenraum zu wenden. Zur Messung des Situationsbewusstseins der Fahrer wurden Fahrverhaltensmaße herangezogen welche als Indikator für die Schnelligkeit und Abruptheit der Reaktionen der Fahrer auf unerwartete kritische Fahrsituationen dienten. Ein Hauptbefund der Dissertation war, dass die Fahrer sich signifikant im Ausmaß ihres Verlassens auf einen hohen Grad an Assistenz unterschieden. Diese interindividuelle Varianz im Verlassen der Fahrer auf einen hohen Grad an Assistenz konnte am besten durch das Vertrauen der Fahrer in das Querführungsassistenzsystem und ihr Aktivierungsniveau erklärt werden: Je höher das Vertrauen der Fahrer in das System und je geringer ihr Aktivierungsniveau, desto stärker verließen sie sich auf das System. Individuelle Fahrermerkmale (Fahrstil) erklärten einen signifikanten Anteil der Varianz im Vertrauen der Fahrer in die Spurhalteassistenzsysteme. (ersetzt wegen neuem Herausgeber) / Advanced driver assistance systems are increasingly built in vehicles with the aim to support drivers while driving, to reduce driver errors and thereby to increase traffic safety. At present, these systems are often designed to warn drivers of specific safety risks (e.g., of an imminent departure from the driving lane). However, there is a trend towards systems that more strongly intervene in driving and that hence, automate parts of the driving task (e.g., autonomously keep the vehicle within the driving lane). However, research on human-machine interaction has shown that automation does not necessarily increase safety, but that it may also lead to unanticipated side effects on performance and safety to the extent that humans adapt to the changing task demands. A major concern in road traffic is that drivers rely too heavily on driver assistance systems, become less actively involved in the driving task, and divert their attention to things unrelated to driving. Thus, in the case of system malfunctions or failures, drivers possibly may not be prepared to intervene timely and accordingly and to regain control over the vehicle, respectively. The aim of this dissertation was to investigate changes in drivers’ active engagement in the driving task as a function of the degree to which they are supported by a driver assistance system (i.e., as a function of the degree to which the system automates the driving task). Drivers’ active task engagement was studied by referring to two theoretical concepts: a) drivers’ reliance (on a system) and b) drivers’ situation awareness. Based on an extensive review of previous research on automation, a conceptual theoretical framework was developed that links changes in operators’ active task engagement to human adaptation processes on different levels in response to the changing task demands due to automation. Among them are changes in human attitudes as well as in cognitive, motivational and energetic processes. In order to determine the relative influence of these processes, a range of objective and subjective measures was collected. The essential part of the dissertation is an extensive driving simulator study in an advanced moving-base driving simulator at VTI (Swedish National Road and Transport Research Institute) in Linköping, Sweden. Two lateral support systems (a Heading Control system and a Lane Departure Warning system) were implemented which assisted drivers to different degrees in lane keeping. Contrary to most previous automation studies, drivers’ reliance on the lane keeping assistance systems and their situation awareness were studied by using process-oriented performance-based measures. Drivers’ reliance on the lane keeping assistance systems was assessed by eye glance behaviour measures indicating drivers’ preparedness to allocate their visual attention away from the road scene to an in-vehicle secondary task. Drivers’ situation awareness was assessed by behavioural measures of the latency and magnitude of drivers’ initial reactions to unexpected critical driving situations. A major finding of the study was that drivers differed significantly in their reliance on a high level of lane keeping assistance. This interindividual variance in drivers’ reliance on higher-level assistance could be best explained by drivers’ trust in the system and their energetic arousal: The greater drivers’ trust in the system and the lower their arousal, the more did they rely on the system. Individual driver variables (driving style) explained a significant proportion of the variance in drivers’ trust in the lane keeping assistance systems. (replaced because a new publisher)
10

Drivers’ reliance on lane keeping assistance systems as a function of the level of assistance

Popken, Anke 08 July 2009 (has links)
Advanced driver assistance systems are increasingly built in vehicles with the aim to support drivers while driving, to reduce driver errors and thereby to increase traffic safety. At present, these systems are often designed to warn drivers of specific safety risks (e.g., of an imminent departure from the driving lane). However, there is a trend towards systems that more strongly intervene in driving and that hence, automate parts of the driving task (e.g., autonomously keep the vehicle within the driving lane). However, research on human-machine interaction has shown that automation does not necessarily increase safety, but that it may also lead to unanticipated side effects on performance and safety to the extent that humans adapt to the changing task demands. A major concern in road traffic is that drivers rely too heavily on driver assistance systems, become less actively involved in the driving task, and divert their attention to things unrelated to driving. Thus, in the case of system malfunctions or failures, drivers possibly may not be prepared to intervene timely and accordingly and to regain control over the vehicle, respectively. The aim of this dissertation was to investigate changes in drivers’ active engagement in the driving task as a function of the degree to which they are supported by a driver assistance system (i.e., as a function of the degree to which the system automates the driving task). Drivers’ active task engagement was studied by referring to two theoretical concepts: a) drivers’ reliance (on a system) and b) drivers’ situation awareness. Based on an extensive review of previous research on automation, a conceptual theoretical framework was developed that links changes in operators’ active task engagement to human adaptation processes on different levels in response to the changing task demands due to automation. Among them are changes in human attitudes as well as in cognitive, motivational and energetic processes. In order to determine the relative influence of these processes, a range of objective and subjective measures was collected. The essential part of the dissertation is an extensive driving simulator study in an advanced moving-base driving simulator at VTI (Swedish National Road and Transport Research Institute) in Linköping, Sweden. Two lateral support systems (a Heading Control system and a Lane Departure Warning system) were implemented which assisted drivers to different degrees in lane keeping. Contrary to most previous automation studies, drivers’ reliance on the lane keeping assistance systems and their situation awareness were studied by using process-oriented performance-based measures. Drivers’ reliance on the lane keeping assistance systems was assessed by eye glance behaviour measures indicating drivers’ preparedness to allocate their visual attention away from the road scene to an in-vehicle secondary task. Drivers’ situation awareness was assessed by behavioural measures of the latency and magnitude of drivers’ initial reactions to unexpected critical driving situations. A major finding of the study was that drivers differed significantly in their reliance on a high level of lane keeping assistance. This interindividual variance in drivers’ reliance on higher-level assistance could be best explained by drivers’ trust in the system and their energetic arousal: The greater drivers’ trust in the system and the lower their arousal, the more did they rely on the system. Individual driver variables (driving style) explained a significant proportion of the variance in drivers’ trust in the lane keeping assistance systems. / Fahrerassistenzsysteme werden zunehmend in Fahrzeuge eingebaut mit dem Ziel, den Fahrer beim Fahren zu unterstützen, Fahrfehler zu vermeiden und damit die Fahrsicherheit zu erhöhen. Derzeit sind häufig Systeme im Einsatz, die den Fahrer vor bestimmten Sicherheitsrisiken warnen (z.B. vor einem unbeabsichtigten Verlassen der Fahrspur). Der Trend geht aber hin zu Systemen, die stärker ins Fahrgeschehen eingreifen und somit Teile der Fahraufgabe automatisieren (z.B. selbständig die Spurhaltung des Fahrzeugs übernehmen). Aus der Forschung zur Mensch-Maschine Interaktion ist jedoch bekannt, dass Automatisierung nicht zwangsläufig zur Erhöhung von Sicherheit führt, sondern dass sie vielmehr auch unerwünschte Nebeneffekte für Performanz und Sicherheit mit sich bringen kann in dem Maße, wie Menschen an die veränderten Aufgabenanforderungen adaptieren. Im Straßenverkehr wird insbesondere befürchtet, dass Fahrer sich zu stark auf Fahrerassistenzsysteme verlassen, sich teilweise aus der Fahraufgabe zurückziehen („abschalten“) und ihre Aufmerksamkeit fahrfremden Dingen widmen. Dies kann unter Umständen dazu führen, dass Fahrer im Falle von Systemfehlern oder –ausfällen nicht mehr in der Lage sind rechtzeitig und angemessen einzugreifen bzw. die Kontrolle über das Fahrzeug zu übernehmen. Ziel der Dissertation war es zu untersuchen, inwieweit sich die Involviertheit von Fahrern in die Fahraufgabe verändert je stärker sie durch ein Assistenzsystem unterstützt werden (d.h., je stärker das System Teile der Fahraufgabe automatisiert). Um dies zu untersuchen wurden zwei theoretische Konzepte herangezogen: a) das Verlassen der Fahrer (auf ein System) und b) das Situationsbewusstsein der Fahrer. Basierend auf einer umfassenden Analyse der Forschungsliteratur zum Thema Automatisierung wurde ein theoretisches Rahmenmodell entwickelt, welches Veränderungen in der Involviertheit des Fahrers in die Fahraufgabe auf menschliche Adaptationsprozesse auf verschiedenen Ebenen zurückführt, die sich in Folge der veränderten Aufgaben­anforderungen durch zunehmende Automatisierung ergeben. Dazu zählen Veränderungen in Einstellungen, sowie in kognitiven, energetischen, und motivationalen Prozessen. Um Veränderungen in diesen Prozessen zu untersuchen, wurde eine Vielzahl an objektiven und subjektiven Maßen erhoben. Hauptgegenstand der Dissertation ist eine umfangreiche Fahrsimulatorstudie im Fahrsimulator mit Bewegungsplattform bei VTI (Swedish National Road and Transport Research Institute) in Linköping, Schweden. Dabei kamen zwei Querführungsassistenzsysteme (ein Heading Control System und ein Lane Departure Warning System) zum Einsatz, die den Fahrer in unterschiedlichem Maße bei der Spurhaltung unterstützten. Im Gegensatz zu einem Großteil der bisherigen Studien wurden prozessorientierte Performanzmaße zur Erfassung des Verlassens der Fahrer auf die Assistenzsysteme und des Situationsbewusstseins der Fahrer verwendet. Das Verlassen der Fahrer auf die Querführungsassistenzsysteme wurde durch Blickverhaltensmaße über die Bereitschaft der Fahrer erfasst, ihre visuelle Aufmerksamkeit von der Straße ab hin zu einer Zweitaufgabe im Fahrzeuginnenraum zu wenden. Zur Messung des Situationsbewusstseins der Fahrer wurden Fahrverhaltensmaße herangezogen welche als Indikator für die Schnelligkeit und Abruptheit der Reaktionen der Fahrer auf unerwartete kritische Fahrsituationen dienten. Ein Hauptbefund der Dissertation war, dass die Fahrer sich signifikant im Ausmaß ihres Verlassens auf einen hohen Grad an Assistenz unterschieden. Diese interindividuelle Varianz im Verlassen der Fahrer auf einen hohen Grad an Assistenz konnte am besten durch das Vertrauen der Fahrer in das Querführungsassistenzsystem und ihr Aktivierungsniveau erklärt werden: Je höher das Vertrauen der Fahrer in das System und je geringer ihr Aktivierungsniveau, desto stärker verließen sie sich auf das System. Individuelle Fahrermerkmale (Fahrstil) erklärten einen signifikanten Anteil der Varianz im Vertrauen der Fahrer in die Spurhalteassistenzsysteme.

Page generated in 0.1117 seconds