• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modellbasierte Vorsteuerungskonzepte für drehzahlvariable hydraulische Antriebe am Beispiel der Kunststoff-Spitzgießmaschine

Radermacher, Tobias 07 February 2022 (has links)
Verdrängergesteuterte hydrostatische Antriebssysteme mit drehzahlvariablem Pumpenantrieb zeichnen sich durch ihre im Vergleich mit ventilgesteuerten Antrieben gute Energieeffizienz und die Möglichkeit der einfachen Stillsetzung aus, weisen jedoch durch die mangelnde Einspannung des Aktors geringere Eigenfrequenzen auf, was die Einstellung von Standardregelkreisen erschwert und meist eine geringere Dynamik und Positioniergenauigkeit zur Folge hat. Hydraulische Achsantriebe, die ohnehin über zahlreiche dominante Nichtlinearitäten verfügen und schwach gedämpft sind können in der Folge das ihnen innewohnende Potential nicht ausschöpfen. Mit einem Vergleich von Dynamik und Präzision verschiedener Antriebssysteme an Hauptantriebsachsen von Kunststoff-Spritzgießmaschinen mittlerer Baugröße wird zunächst das Leistungspotential analysiert. Auf dieser Basis werden Methoden zur Verbesserung der statischen und dynamischen Eigenschaften drehzahlvariabler verdrängergesteuerter Antriebe in Positions- und Druckregelung entwickelt, welche sich durch eine einfache Parametrierung und hohe Robustheit auszeichnen, da sie ohne einen geschlossenen Regelkreis funktionieren. Die dynamische inversionsbasierte Vorsteuerung ermöglicht dabei ein initial gutes Folgeverhalten, das durch die Anwendung einer iterativ lernenden Regelung in jedem Zyklus weiter verbessert wird. Um die Dynamik von Folgeregelungen mit weiteren Randbedingungen zu maximieren wird eine Methode entwickelt, mit der es möglich ist, eine Bewegungsvorgabe entlang der physikalischen Leistungsgrenzen des Antriebssystems zu berechnen und die wirkenden Begrenzungen aufzuzeigen. Die Erstellung von Bewegungsvorgaben sowie die Einstellung der lernenden Regelung sind dabei jeweils mit einem einzigen Parameter möglich. Die experimentelle Untersuchung und der Funktionsnachweis der entwickelten Methoden am Beispiel der Kunststoff-Spritzgießmaschine zeigt eine deutliche Steigerung der möglichen Dynamik verdrängergesteuerter Antriebssysteme, ein gutes Folgeverhalten sowie eine erhöhte Positioniergenauigkeit bei gleichzeitiger Unabhängigkeit von der Betriebstemperatur.:1. Einleitung und wissenschaftliche Problemstellung 7 2. Zielsetzung der Arbeit 11 3. Stand der Forschung und Technik 13 3.1 Architekturen hydraulischer Linearantriebe 13 3.2 Betriebsverhalten drehzahlvariabler verdrängergesteuerter Antriebe 16 3.3 Regelung hydraulischer Achsantriebe in Verdrängersteuerung 18 3.4 Vorsteuerungen und iterativ lernende Regelungen 21 4. Antriebstechnik in Kunststoff-Spritzgießmaschinen 25 5. Analyse der Leistungsfähigkeit von Antriebssystemen in SGM 27 5.1 Aufbau und Funktionsweise von Spritzgießmaschinen 28 5.2 Auswahl der Antriebssysteme 31 5.3 Analyse der Bewegungsdynamik 34 5.4 Analyse der Positioniergenauigkeit 37 5.5 Analyse der Druckregelung 39 5.6 Identifikation von Potentialen für die Leistungssteigerung 44 6. Trajektoriengenerierung entlang der Systemleistungsgrenzen 47 6.1 Kniehebel-Schließeinheit 48 6.2 Analyse statischer und dynamischer Restriktionen 50 6.3 Trajektorienentwurfsmethodik 59 7. Modellbasierte dynamische Vorsteuerung 67 7.1 Methodik 68 7.2 Mathematisch-physikalische Beschreibung 69 7.3 Inversionsbasiertes Steuergesetz 75 8. Modellbasierte lernende Vorsteuerung 77 8.1 Methodik 78 8.2 Entwurf modellbasierter normoptimaler iterativ lernender Regelungen 79 8.3 Stabilitätsnachweis 84 8.4 Generierung von Lernmodellen 86 9. Anwendung der Verfahren und Diskussion 91 9.1 Positionsregelung im geschlossenen hydrostatischen Kreis 93 9.2 Lastkraftregelung im offenen Kreis 108 9.3 Ablösende Regelung: Geschwindigkeit - Last 123 10. Zusammenfassung 127 11. Literatur 133 12. Anhang 145 / Displacement-controlled hydrostatic drive systems with variable-speed pump are characterized by their good energy efficiency and the possibility of simple shutdown compared with valve-controlled drives, but they have lower natural frequencies, which makes the application of standard closed-loop control more difficult and usually results in lower dynamics and positioning accuracy. As a result hydraulic drives, which already have numerous dominant nonlinearities and are weakly damped, cannot exploit their full potential. The work starts with a comparison and an analysis of the dynamics and precision of different drive systems on main drive axes of medium-size plastic injection molding machines. On this basis, methods are developed for improving the static and dynamic properties of variable-speed displacement-controlled drives in position and pressure control. These methods are characterized by simple parameterization and high robustness without relying on a closed-loop control. In this context, the dynamic inversion-based feedforward control allows for a good tracking performance, which is further improved by applying a cycle-wise iterative learning control. In order to fulfill the dynamics of follow-up control with position boundary conditions, a method is developed which allows for calculating a motion specification along the physical performance limits of the drive system and to show the existing limitations. The creation of motion presets as well as the setting-up of a learning controller may be done with one single parameter. Experimental investigation of the developed methods using the example of the plastic injection molding machine shows a significant increase in dynamics of displacement-controlled drive systems, good follow-up behavior, and increased positioning accuracy while remaining independent of the operating temperature.:1. Einleitung und wissenschaftliche Problemstellung 7 2. Zielsetzung der Arbeit 11 3. Stand der Forschung und Technik 13 3.1 Architekturen hydraulischer Linearantriebe 13 3.2 Betriebsverhalten drehzahlvariabler verdrängergesteuerter Antriebe 16 3.3 Regelung hydraulischer Achsantriebe in Verdrängersteuerung 18 3.4 Vorsteuerungen und iterativ lernende Regelungen 21 4. Antriebstechnik in Kunststoff-Spritzgießmaschinen 25 5. Analyse der Leistungsfähigkeit von Antriebssystemen in SGM 27 5.1 Aufbau und Funktionsweise von Spritzgießmaschinen 28 5.2 Auswahl der Antriebssysteme 31 5.3 Analyse der Bewegungsdynamik 34 5.4 Analyse der Positioniergenauigkeit 37 5.5 Analyse der Druckregelung 39 5.6 Identifikation von Potentialen für die Leistungssteigerung 44 6. Trajektoriengenerierung entlang der Systemleistungsgrenzen 47 6.1 Kniehebel-Schließeinheit 48 6.2 Analyse statischer und dynamischer Restriktionen 50 6.3 Trajektorienentwurfsmethodik 59 7. Modellbasierte dynamische Vorsteuerung 67 7.1 Methodik 68 7.2 Mathematisch-physikalische Beschreibung 69 7.3 Inversionsbasiertes Steuergesetz 75 8. Modellbasierte lernende Vorsteuerung 77 8.1 Methodik 78 8.2 Entwurf modellbasierter normoptimaler iterativ lernender Regelungen 79 8.3 Stabilitätsnachweis 84 8.4 Generierung von Lernmodellen 86 9. Anwendung der Verfahren und Diskussion 91 9.1 Positionsregelung im geschlossenen hydrostatischen Kreis 93 9.2 Lastkraftregelung im offenen Kreis 108 9.3 Ablösende Regelung: Geschwindigkeit - Last 123 10. Zusammenfassung 127 11. Literatur 133 12. Anhang 145
2

Drivers’ reliance on lane keeping assistance systems as a function of the level of assistance

Popken, Anke 28 April 2010 (has links) (PDF)
Fahrerassistenzsysteme werden zunehmend in Fahrzeuge eingebaut mit dem Ziel, den Fahrer beim Fahren zu unterstützen, Fahrfehler zu vermeiden und damit die Fahrsicherheit zu erhöhen. Derzeit sind häufig Systeme im Einsatz, die den Fahrer vor bestimmten Sicherheitsrisiken warnen (z.B. vor einem unbeabsichtigten Verlassen der Fahrspur). Der Trend geht aber hin zu Systemen, die stärker ins Fahrgeschehen eingreifen und somit Teile der Fahraufgabe automatisieren (z.B. selbständig die Spurhaltung des Fahrzeugs übernehmen). Aus der Forschung zur Mensch-Maschine Interaktion ist jedoch bekannt, dass Automatisierung nicht zwangsläufig zur Erhöhung von Sicherheit führt, sondern dass sie vielmehr auch unerwünschte Nebeneffekte für Performanz und Sicherheit mit sich bringen kann in dem Maße, wie Menschen an die veränderten Aufgabenanforderungen adaptieren. Im Straßenverkehr wird insbesondere befürchtet, dass Fahrer sich zu stark auf Fahrerassistenzsysteme verlassen, sich teilweise aus der Fahraufgabe zurückziehen („abschalten“) und ihre Aufmerksamkeit fahrfremden Dingen widmen. Dies kann unter Umständen dazu führen, dass Fahrer im Falle von Systemfehlern oder –ausfällen nicht mehr in der Lage sind rechtzeitig und angemessen einzugreifen bzw. die Kontrolle über das Fahrzeug zu übernehmen. Ziel der Dissertation war es zu untersuchen, inwieweit sich die Involviertheit von Fahrern in die Fahraufgabe verändert je stärker sie durch ein Assistenzsystem unterstützt werden (d.h., je stärker das System Teile der Fahraufgabe automatisiert). Um dies zu untersuchen wurden zwei theoretische Konzepte herangezogen: a) das Verlassen der Fahrer (auf ein System) und b) das Situationsbewusstsein der Fahrer. Basierend auf einer umfassenden Analyse der Forschungsliteratur zum Thema Automatisierung wurde ein theoretisches Rahmenmodell entwickelt, welches Veränderungen in der Involviertheit des Fahrers in die Fahraufgabe auf menschliche Adaptationsprozesse auf verschiedenen Ebenen zurückführt, die sich in Folge der veränderten Aufgaben­anforderungen durch zunehmende Automatisierung ergeben. Dazu zählen Veränderungen in Einstellungen, sowie in kognitiven, energetischen, und motivationalen Prozessen. Um Veränderungen in diesen Prozessen zu untersuchen, wurde eine Vielzahl an objektiven und subjektiven Maßen erhoben. Hauptgegenstand der Dissertation ist eine umfangreiche Fahrsimulatorstudie im Fahrsimulator mit Bewegungsplattform bei VTI (Swedish National Road and Transport Research Institute) in Linköping, Schweden. Dabei kamen zwei Querführungsassistenzsysteme (ein Heading Control System und ein Lane Departure Warning System) zum Einsatz, die den Fahrer in unterschiedlichem Maße bei der Spurhaltung unterstützten. Im Gegensatz zu einem Großteil der bisherigen Studien wurden prozessorientierte Performanzmaße zur Erfassung des Verlassens der Fahrer auf die Assistenzsysteme und des Situationsbewusstseins der Fahrer verwendet. Das Verlassen der Fahrer auf die Querführungsassistenzsysteme wurde durch Blickverhaltensmaße über die Bereitschaft der Fahrer erfasst, ihre visuelle Aufmerksamkeit von der Straße ab hin zu einer Zweitaufgabe im Fahrzeuginnenraum zu wenden. Zur Messung des Situationsbewusstseins der Fahrer wurden Fahrverhaltensmaße herangezogen welche als Indikator für die Schnelligkeit und Abruptheit der Reaktionen der Fahrer auf unerwartete kritische Fahrsituationen dienten. Ein Hauptbefund der Dissertation war, dass die Fahrer sich signifikant im Ausmaß ihres Verlassens auf einen hohen Grad an Assistenz unterschieden. Diese interindividuelle Varianz im Verlassen der Fahrer auf einen hohen Grad an Assistenz konnte am besten durch das Vertrauen der Fahrer in das Querführungsassistenzsystem und ihr Aktivierungsniveau erklärt werden: Je höher das Vertrauen der Fahrer in das System und je geringer ihr Aktivierungsniveau, desto stärker verließen sie sich auf das System. Individuelle Fahrermerkmale (Fahrstil) erklärten einen signifikanten Anteil der Varianz im Vertrauen der Fahrer in die Spurhalteassistenzsysteme. (ersetzt wegen neuem Herausgeber) / Advanced driver assistance systems are increasingly built in vehicles with the aim to support drivers while driving, to reduce driver errors and thereby to increase traffic safety. At present, these systems are often designed to warn drivers of specific safety risks (e.g., of an imminent departure from the driving lane). However, there is a trend towards systems that more strongly intervene in driving and that hence, automate parts of the driving task (e.g., autonomously keep the vehicle within the driving lane). However, research on human-machine interaction has shown that automation does not necessarily increase safety, but that it may also lead to unanticipated side effects on performance and safety to the extent that humans adapt to the changing task demands. A major concern in road traffic is that drivers rely too heavily on driver assistance systems, become less actively involved in the driving task, and divert their attention to things unrelated to driving. Thus, in the case of system malfunctions or failures, drivers possibly may not be prepared to intervene timely and accordingly and to regain control over the vehicle, respectively. The aim of this dissertation was to investigate changes in drivers’ active engagement in the driving task as a function of the degree to which they are supported by a driver assistance system (i.e., as a function of the degree to which the system automates the driving task). Drivers’ active task engagement was studied by referring to two theoretical concepts: a) drivers’ reliance (on a system) and b) drivers’ situation awareness. Based on an extensive review of previous research on automation, a conceptual theoretical framework was developed that links changes in operators’ active task engagement to human adaptation processes on different levels in response to the changing task demands due to automation. Among them are changes in human attitudes as well as in cognitive, motivational and energetic processes. In order to determine the relative influence of these processes, a range of objective and subjective measures was collected. The essential part of the dissertation is an extensive driving simulator study in an advanced moving-base driving simulator at VTI (Swedish National Road and Transport Research Institute) in Linköping, Sweden. Two lateral support systems (a Heading Control system and a Lane Departure Warning system) were implemented which assisted drivers to different degrees in lane keeping. Contrary to most previous automation studies, drivers’ reliance on the lane keeping assistance systems and their situation awareness were studied by using process-oriented performance-based measures. Drivers’ reliance on the lane keeping assistance systems was assessed by eye glance behaviour measures indicating drivers’ preparedness to allocate their visual attention away from the road scene to an in-vehicle secondary task. Drivers’ situation awareness was assessed by behavioural measures of the latency and magnitude of drivers’ initial reactions to unexpected critical driving situations. A major finding of the study was that drivers differed significantly in their reliance on a high level of lane keeping assistance. This interindividual variance in drivers’ reliance on higher-level assistance could be best explained by drivers’ trust in the system and their energetic arousal: The greater drivers’ trust in the system and the lower their arousal, the more did they rely on the system. Individual driver variables (driving style) explained a significant proportion of the variance in drivers’ trust in the lane keeping assistance systems. (replaced because a new publisher)
3

Drivers’ reliance on lane keeping assistance systems as a function of the level of assistance

Popken, Anke 03 May 2010 (has links) (PDF)
Advanced driver assistance systems are increasingly built in vehicles with the aim to support drivers while driving, to reduce driver errors and thereby to increase traffic safety. At present, these systems are often designed to warn drivers of specific safety risks (e.g., of an imminent departure from the driving lane). However, there is a trend towards systems that more strongly intervene in driving and that hence, automate parts of the driving task (e.g., autonomously keep the vehicle within the driving lane). However, research on human-machine interaction has shown that automation does not necessarily increase safety, but that it may also lead to unanticipated side effects on performance and safety to the extent that humans adapt to the changing task demands. A major concern in road traffic is that drivers rely too heavily on driver assistance systems, become less actively involved in the driving task, and divert their attention to things unrelated to driving. Thus, in the case of system malfunctions or failures, drivers possibly may not be prepared to intervene timely and accordingly and to regain control over the vehicle, respectively. The aim of this dissertation was to investigate changes in drivers’ active engagement in the driving task as a function of the degree to which they are supported by a driver assistance system (i.e., as a function of the degree to which the system automates the driving task). Drivers’ active task engagement was studied by referring to two theoretical concepts: a) drivers’ reliance (on a system) and b) drivers’ situation awareness. Based on an extensive review of previous research on automation, a conceptual theoretical framework was developed that links changes in operators’ active task engagement to human adaptation processes on different levels in response to the changing task demands due to automation. Among them are changes in human attitudes as well as in cognitive, motivational and energetic processes. In order to determine the relative influence of these processes, a range of objective and subjective measures was collected. The essential part of the dissertation is an extensive driving simulator study in an advanced moving-base driving simulator at VTI (Swedish National Road and Transport Research Institute) in Linköping, Sweden. Two lateral support systems (a Heading Control system and a Lane Departure Warning system) were implemented which assisted drivers to different degrees in lane keeping. Contrary to most previous automation studies, drivers’ reliance on the lane keeping assistance systems and their situation awareness were studied by using process-oriented performance-based measures. Drivers’ reliance on the lane keeping assistance systems was assessed by eye glance behaviour measures indicating drivers’ preparedness to allocate their visual attention away from the road scene to an in-vehicle secondary task. Drivers’ situation awareness was assessed by behavioural measures of the latency and magnitude of drivers’ initial reactions to unexpected critical driving situations. A major finding of the study was that drivers differed significantly in their reliance on a high level of lane keeping assistance. This interindividual variance in drivers’ reliance on higher-level assistance could be best explained by drivers’ trust in the system and their energetic arousal: The greater drivers’ trust in the system and the lower their arousal, the more did they rely on the system. Individual driver variables (driving style) explained a significant proportion of the variance in drivers’ trust in the lane keeping assistance systems. / Fahrerassistenzsysteme werden zunehmend in Fahrzeuge eingebaut mit dem Ziel, den Fahrer beim Fahren zu unterstützen, Fahrfehler zu vermeiden und damit die Fahrsicherheit zu erhöhen. Derzeit sind häufig Systeme im Einsatz, die den Fahrer vor bestimmten Sicherheitsrisiken warnen (z.B. vor einem unbeabsichtigten Verlassen der Fahrspur). Der Trend geht aber hin zu Systemen, die stärker ins Fahrgeschehen eingreifen und somit Teile der Fahraufgabe automatisieren (z.B. selbständig die Spurhaltung des Fahrzeugs übernehmen). Aus der Forschung zur Mensch-Maschine Interaktion ist jedoch bekannt, dass Automatisierung nicht zwangsläufig zur Erhöhung von Sicherheit führt, sondern dass sie vielmehr auch unerwünschte Nebeneffekte für Performanz und Sicherheit mit sich bringen kann in dem Maße, wie Menschen an die veränderten Aufgabenanforderungen adaptieren. Im Straßenverkehr wird insbesondere befürchtet, dass Fahrer sich zu stark auf Fahrerassistenzsysteme verlassen, sich teilweise aus der Fahraufgabe zurückziehen („abschalten“) und ihre Aufmerksamkeit fahrfremden Dingen widmen. Dies kann unter Umständen dazu führen, dass Fahrer im Falle von Systemfehlern oder –ausfällen nicht mehr in der Lage sind rechtzeitig und angemessen einzugreifen bzw. die Kontrolle über das Fahrzeug zu übernehmen. Ziel der Dissertation war es zu untersuchen, inwieweit sich die Involviertheit von Fahrern in die Fahraufgabe verändert je stärker sie durch ein Assistenzsystem unterstützt werden (d.h., je stärker das System Teile der Fahraufgabe automatisiert). Um dies zu untersuchen wurden zwei theoretische Konzepte herangezogen: a) das Verlassen der Fahrer (auf ein System) und b) das Situationsbewusstsein der Fahrer. Basierend auf einer umfassenden Analyse der Forschungsliteratur zum Thema Automatisierung wurde ein theoretisches Rahmenmodell entwickelt, welches Veränderungen in der Involviertheit des Fahrers in die Fahraufgabe auf menschliche Adaptationsprozesse auf verschiedenen Ebenen zurückführt, die sich in Folge der veränderten Aufgaben­anforderungen durch zunehmende Automatisierung ergeben. Dazu zählen Veränderungen in Einstellungen, sowie in kognitiven, energetischen, und motivationalen Prozessen. Um Veränderungen in diesen Prozessen zu untersuchen, wurde eine Vielzahl an objektiven und subjektiven Maßen erhoben. Hauptgegenstand der Dissertation ist eine umfangreiche Fahrsimulatorstudie im Fahrsimulator mit Bewegungsplattform bei VTI (Swedish National Road and Transport Research Institute) in Linköping, Schweden. Dabei kamen zwei Querführungsassistenzsysteme (ein Heading Control System und ein Lane Departure Warning System) zum Einsatz, die den Fahrer in unterschiedlichem Maße bei der Spurhaltung unterstützten. Im Gegensatz zu einem Großteil der bisherigen Studien wurden prozessorientierte Performanzmaße zur Erfassung des Verlassens der Fahrer auf die Assistenzsysteme und des Situationsbewusstseins der Fahrer verwendet. Das Verlassen der Fahrer auf die Querführungsassistenzsysteme wurde durch Blickverhaltensmaße über die Bereitschaft der Fahrer erfasst, ihre visuelle Aufmerksamkeit von der Straße ab hin zu einer Zweitaufgabe im Fahrzeuginnenraum zu wenden. Zur Messung des Situationsbewusstseins der Fahrer wurden Fahrverhaltensmaße herangezogen welche als Indikator für die Schnelligkeit und Abruptheit der Reaktionen der Fahrer auf unerwartete kritische Fahrsituationen dienten. Ein Hauptbefund der Dissertation war, dass die Fahrer sich signifikant im Ausmaß ihres Verlassens auf einen hohen Grad an Assistenz unterschieden. Diese interindividuelle Varianz im Verlassen der Fahrer auf einen hohen Grad an Assistenz konnte am besten durch das Vertrauen der Fahrer in das Querführungsassistenzsystem und ihr Aktivierungsniveau erklärt werden: Je höher das Vertrauen der Fahrer in das System und je geringer ihr Aktivierungsniveau, desto stärker verließen sie sich auf das System. Individuelle Fahrermerkmale (Fahrstil) erklärten einen signifikanten Anteil der Varianz im Vertrauen der Fahrer in die Spurhalteassistenzsysteme.
4

Drivers’ reliance on lane keeping assistance systems as a function of the level of assistance

Popken, Anke 08 July 2009 (has links)
Fahrerassistenzsysteme werden zunehmend in Fahrzeuge eingebaut mit dem Ziel, den Fahrer beim Fahren zu unterstützen, Fahrfehler zu vermeiden und damit die Fahrsicherheit zu erhöhen. Derzeit sind häufig Systeme im Einsatz, die den Fahrer vor bestimmten Sicherheitsrisiken warnen (z.B. vor einem unbeabsichtigten Verlassen der Fahrspur). Der Trend geht aber hin zu Systemen, die stärker ins Fahrgeschehen eingreifen und somit Teile der Fahraufgabe automatisieren (z.B. selbständig die Spurhaltung des Fahrzeugs übernehmen). Aus der Forschung zur Mensch-Maschine Interaktion ist jedoch bekannt, dass Automatisierung nicht zwangsläufig zur Erhöhung von Sicherheit führt, sondern dass sie vielmehr auch unerwünschte Nebeneffekte für Performanz und Sicherheit mit sich bringen kann in dem Maße, wie Menschen an die veränderten Aufgabenanforderungen adaptieren. Im Straßenverkehr wird insbesondere befürchtet, dass Fahrer sich zu stark auf Fahrerassistenzsysteme verlassen, sich teilweise aus der Fahraufgabe zurückziehen („abschalten“) und ihre Aufmerksamkeit fahrfremden Dingen widmen. Dies kann unter Umständen dazu führen, dass Fahrer im Falle von Systemfehlern oder –ausfällen nicht mehr in der Lage sind rechtzeitig und angemessen einzugreifen bzw. die Kontrolle über das Fahrzeug zu übernehmen. Ziel der Dissertation war es zu untersuchen, inwieweit sich die Involviertheit von Fahrern in die Fahraufgabe verändert je stärker sie durch ein Assistenzsystem unterstützt werden (d.h., je stärker das System Teile der Fahraufgabe automatisiert). Um dies zu untersuchen wurden zwei theoretische Konzepte herangezogen: a) das Verlassen der Fahrer (auf ein System) und b) das Situationsbewusstsein der Fahrer. Basierend auf einer umfassenden Analyse der Forschungsliteratur zum Thema Automatisierung wurde ein theoretisches Rahmenmodell entwickelt, welches Veränderungen in der Involviertheit des Fahrers in die Fahraufgabe auf menschliche Adaptationsprozesse auf verschiedenen Ebenen zurückführt, die sich in Folge der veränderten Aufgaben­anforderungen durch zunehmende Automatisierung ergeben. Dazu zählen Veränderungen in Einstellungen, sowie in kognitiven, energetischen, und motivationalen Prozessen. Um Veränderungen in diesen Prozessen zu untersuchen, wurde eine Vielzahl an objektiven und subjektiven Maßen erhoben. Hauptgegenstand der Dissertation ist eine umfangreiche Fahrsimulatorstudie im Fahrsimulator mit Bewegungsplattform bei VTI (Swedish National Road and Transport Research Institute) in Linköping, Schweden. Dabei kamen zwei Querführungsassistenzsysteme (ein Heading Control System und ein Lane Departure Warning System) zum Einsatz, die den Fahrer in unterschiedlichem Maße bei der Spurhaltung unterstützten. Im Gegensatz zu einem Großteil der bisherigen Studien wurden prozessorientierte Performanzmaße zur Erfassung des Verlassens der Fahrer auf die Assistenzsysteme und des Situationsbewusstseins der Fahrer verwendet. Das Verlassen der Fahrer auf die Querführungsassistenzsysteme wurde durch Blickverhaltensmaße über die Bereitschaft der Fahrer erfasst, ihre visuelle Aufmerksamkeit von der Straße ab hin zu einer Zweitaufgabe im Fahrzeuginnenraum zu wenden. Zur Messung des Situationsbewusstseins der Fahrer wurden Fahrverhaltensmaße herangezogen welche als Indikator für die Schnelligkeit und Abruptheit der Reaktionen der Fahrer auf unerwartete kritische Fahrsituationen dienten. Ein Hauptbefund der Dissertation war, dass die Fahrer sich signifikant im Ausmaß ihres Verlassens auf einen hohen Grad an Assistenz unterschieden. Diese interindividuelle Varianz im Verlassen der Fahrer auf einen hohen Grad an Assistenz konnte am besten durch das Vertrauen der Fahrer in das Querführungsassistenzsystem und ihr Aktivierungsniveau erklärt werden: Je höher das Vertrauen der Fahrer in das System und je geringer ihr Aktivierungsniveau, desto stärker verließen sie sich auf das System. Individuelle Fahrermerkmale (Fahrstil) erklärten einen signifikanten Anteil der Varianz im Vertrauen der Fahrer in die Spurhalteassistenzsysteme. (ersetzt wegen neuem Herausgeber) / Advanced driver assistance systems are increasingly built in vehicles with the aim to support drivers while driving, to reduce driver errors and thereby to increase traffic safety. At present, these systems are often designed to warn drivers of specific safety risks (e.g., of an imminent departure from the driving lane). However, there is a trend towards systems that more strongly intervene in driving and that hence, automate parts of the driving task (e.g., autonomously keep the vehicle within the driving lane). However, research on human-machine interaction has shown that automation does not necessarily increase safety, but that it may also lead to unanticipated side effects on performance and safety to the extent that humans adapt to the changing task demands. A major concern in road traffic is that drivers rely too heavily on driver assistance systems, become less actively involved in the driving task, and divert their attention to things unrelated to driving. Thus, in the case of system malfunctions or failures, drivers possibly may not be prepared to intervene timely and accordingly and to regain control over the vehicle, respectively. The aim of this dissertation was to investigate changes in drivers’ active engagement in the driving task as a function of the degree to which they are supported by a driver assistance system (i.e., as a function of the degree to which the system automates the driving task). Drivers’ active task engagement was studied by referring to two theoretical concepts: a) drivers’ reliance (on a system) and b) drivers’ situation awareness. Based on an extensive review of previous research on automation, a conceptual theoretical framework was developed that links changes in operators’ active task engagement to human adaptation processes on different levels in response to the changing task demands due to automation. Among them are changes in human attitudes as well as in cognitive, motivational and energetic processes. In order to determine the relative influence of these processes, a range of objective and subjective measures was collected. The essential part of the dissertation is an extensive driving simulator study in an advanced moving-base driving simulator at VTI (Swedish National Road and Transport Research Institute) in Linköping, Sweden. Two lateral support systems (a Heading Control system and a Lane Departure Warning system) were implemented which assisted drivers to different degrees in lane keeping. Contrary to most previous automation studies, drivers’ reliance on the lane keeping assistance systems and their situation awareness were studied by using process-oriented performance-based measures. Drivers’ reliance on the lane keeping assistance systems was assessed by eye glance behaviour measures indicating drivers’ preparedness to allocate their visual attention away from the road scene to an in-vehicle secondary task. Drivers’ situation awareness was assessed by behavioural measures of the latency and magnitude of drivers’ initial reactions to unexpected critical driving situations. A major finding of the study was that drivers differed significantly in their reliance on a high level of lane keeping assistance. This interindividual variance in drivers’ reliance on higher-level assistance could be best explained by drivers’ trust in the system and their energetic arousal: The greater drivers’ trust in the system and the lower their arousal, the more did they rely on the system. Individual driver variables (driving style) explained a significant proportion of the variance in drivers’ trust in the lane keeping assistance systems. (replaced because a new publisher)
5

Drivers’ reliance on lane keeping assistance systems as a function of the level of assistance

Popken, Anke 08 July 2009 (has links)
Advanced driver assistance systems are increasingly built in vehicles with the aim to support drivers while driving, to reduce driver errors and thereby to increase traffic safety. At present, these systems are often designed to warn drivers of specific safety risks (e.g., of an imminent departure from the driving lane). However, there is a trend towards systems that more strongly intervene in driving and that hence, automate parts of the driving task (e.g., autonomously keep the vehicle within the driving lane). However, research on human-machine interaction has shown that automation does not necessarily increase safety, but that it may also lead to unanticipated side effects on performance and safety to the extent that humans adapt to the changing task demands. A major concern in road traffic is that drivers rely too heavily on driver assistance systems, become less actively involved in the driving task, and divert their attention to things unrelated to driving. Thus, in the case of system malfunctions or failures, drivers possibly may not be prepared to intervene timely and accordingly and to regain control over the vehicle, respectively. The aim of this dissertation was to investigate changes in drivers’ active engagement in the driving task as a function of the degree to which they are supported by a driver assistance system (i.e., as a function of the degree to which the system automates the driving task). Drivers’ active task engagement was studied by referring to two theoretical concepts: a) drivers’ reliance (on a system) and b) drivers’ situation awareness. Based on an extensive review of previous research on automation, a conceptual theoretical framework was developed that links changes in operators’ active task engagement to human adaptation processes on different levels in response to the changing task demands due to automation. Among them are changes in human attitudes as well as in cognitive, motivational and energetic processes. In order to determine the relative influence of these processes, a range of objective and subjective measures was collected. The essential part of the dissertation is an extensive driving simulator study in an advanced moving-base driving simulator at VTI (Swedish National Road and Transport Research Institute) in Linköping, Sweden. Two lateral support systems (a Heading Control system and a Lane Departure Warning system) were implemented which assisted drivers to different degrees in lane keeping. Contrary to most previous automation studies, drivers’ reliance on the lane keeping assistance systems and their situation awareness were studied by using process-oriented performance-based measures. Drivers’ reliance on the lane keeping assistance systems was assessed by eye glance behaviour measures indicating drivers’ preparedness to allocate their visual attention away from the road scene to an in-vehicle secondary task. Drivers’ situation awareness was assessed by behavioural measures of the latency and magnitude of drivers’ initial reactions to unexpected critical driving situations. A major finding of the study was that drivers differed significantly in their reliance on a high level of lane keeping assistance. This interindividual variance in drivers’ reliance on higher-level assistance could be best explained by drivers’ trust in the system and their energetic arousal: The greater drivers’ trust in the system and the lower their arousal, the more did they rely on the system. Individual driver variables (driving style) explained a significant proportion of the variance in drivers’ trust in the lane keeping assistance systems. / Fahrerassistenzsysteme werden zunehmend in Fahrzeuge eingebaut mit dem Ziel, den Fahrer beim Fahren zu unterstützen, Fahrfehler zu vermeiden und damit die Fahrsicherheit zu erhöhen. Derzeit sind häufig Systeme im Einsatz, die den Fahrer vor bestimmten Sicherheitsrisiken warnen (z.B. vor einem unbeabsichtigten Verlassen der Fahrspur). Der Trend geht aber hin zu Systemen, die stärker ins Fahrgeschehen eingreifen und somit Teile der Fahraufgabe automatisieren (z.B. selbständig die Spurhaltung des Fahrzeugs übernehmen). Aus der Forschung zur Mensch-Maschine Interaktion ist jedoch bekannt, dass Automatisierung nicht zwangsläufig zur Erhöhung von Sicherheit führt, sondern dass sie vielmehr auch unerwünschte Nebeneffekte für Performanz und Sicherheit mit sich bringen kann in dem Maße, wie Menschen an die veränderten Aufgabenanforderungen adaptieren. Im Straßenverkehr wird insbesondere befürchtet, dass Fahrer sich zu stark auf Fahrerassistenzsysteme verlassen, sich teilweise aus der Fahraufgabe zurückziehen („abschalten“) und ihre Aufmerksamkeit fahrfremden Dingen widmen. Dies kann unter Umständen dazu führen, dass Fahrer im Falle von Systemfehlern oder –ausfällen nicht mehr in der Lage sind rechtzeitig und angemessen einzugreifen bzw. die Kontrolle über das Fahrzeug zu übernehmen. Ziel der Dissertation war es zu untersuchen, inwieweit sich die Involviertheit von Fahrern in die Fahraufgabe verändert je stärker sie durch ein Assistenzsystem unterstützt werden (d.h., je stärker das System Teile der Fahraufgabe automatisiert). Um dies zu untersuchen wurden zwei theoretische Konzepte herangezogen: a) das Verlassen der Fahrer (auf ein System) und b) das Situationsbewusstsein der Fahrer. Basierend auf einer umfassenden Analyse der Forschungsliteratur zum Thema Automatisierung wurde ein theoretisches Rahmenmodell entwickelt, welches Veränderungen in der Involviertheit des Fahrers in die Fahraufgabe auf menschliche Adaptationsprozesse auf verschiedenen Ebenen zurückführt, die sich in Folge der veränderten Aufgaben­anforderungen durch zunehmende Automatisierung ergeben. Dazu zählen Veränderungen in Einstellungen, sowie in kognitiven, energetischen, und motivationalen Prozessen. Um Veränderungen in diesen Prozessen zu untersuchen, wurde eine Vielzahl an objektiven und subjektiven Maßen erhoben. Hauptgegenstand der Dissertation ist eine umfangreiche Fahrsimulatorstudie im Fahrsimulator mit Bewegungsplattform bei VTI (Swedish National Road and Transport Research Institute) in Linköping, Schweden. Dabei kamen zwei Querführungsassistenzsysteme (ein Heading Control System und ein Lane Departure Warning System) zum Einsatz, die den Fahrer in unterschiedlichem Maße bei der Spurhaltung unterstützten. Im Gegensatz zu einem Großteil der bisherigen Studien wurden prozessorientierte Performanzmaße zur Erfassung des Verlassens der Fahrer auf die Assistenzsysteme und des Situationsbewusstseins der Fahrer verwendet. Das Verlassen der Fahrer auf die Querführungsassistenzsysteme wurde durch Blickverhaltensmaße über die Bereitschaft der Fahrer erfasst, ihre visuelle Aufmerksamkeit von der Straße ab hin zu einer Zweitaufgabe im Fahrzeuginnenraum zu wenden. Zur Messung des Situationsbewusstseins der Fahrer wurden Fahrverhaltensmaße herangezogen welche als Indikator für die Schnelligkeit und Abruptheit der Reaktionen der Fahrer auf unerwartete kritische Fahrsituationen dienten. Ein Hauptbefund der Dissertation war, dass die Fahrer sich signifikant im Ausmaß ihres Verlassens auf einen hohen Grad an Assistenz unterschieden. Diese interindividuelle Varianz im Verlassen der Fahrer auf einen hohen Grad an Assistenz konnte am besten durch das Vertrauen der Fahrer in das Querführungsassistenzsystem und ihr Aktivierungsniveau erklärt werden: Je höher das Vertrauen der Fahrer in das System und je geringer ihr Aktivierungsniveau, desto stärker verließen sie sich auf das System. Individuelle Fahrermerkmale (Fahrstil) erklärten einen signifikanten Anteil der Varianz im Vertrauen der Fahrer in die Spurhalteassistenzsysteme.

Page generated in 0.0614 seconds