• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 22
  • 22
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Electronic States of Heavy Fermion Metals in High Magnetic Fields

Rourke, Patrick Michael Carl 25 September 2009 (has links)
Heavy fermion metals often exhibit novel electronic states at low temperatures, due to competing interactions and energy scales. In order to characterize these states, precise determination of material electronic properties, such as the Fermi surface topology, is necessary. Magnetic field is a particularly powerful tool, since it can be used as both a tuning parameter and probe of the fundamental physics of heavy fermion compounds. In CePb3, I measured magnetoresistance and torque for 23 mK ≤ T ≤ 400 mK, 0 T ≤ H ≤ 18 T, and magnetic field rotated between the (100), (110), and (111) directions. For H||(111), my magnetoresistance results show a decreasing Fermi liquid temperature range near Hc, and a T^2 coefficient that diverges as A(H) ∝ |H −Hc|^−α, with Hc ~ 6 T and α ~ 1. The torque exhibits a complicated dependence on magnetic field strength and angle. By comparison to numerical spin models, I find that the “spin-flop” scenario previously thought to describe the physics of CePb3 does not provide a good explanation of the experimental results. Using novel data acquisition software that exceeds the capabilities of a traditional measurement set-up, I measured de Haas–van Alphen oscillations in YbRh2Si2 for 30 mK ≤ T ≤ 600 mK, 8 T ≤ H ≤ 16 T, and magnetic field rotated between the (100), (110), and (001) directions. The measured frequencies smoothly increase as the field is decreased through H0 ≈ 10 T. I compared my measurements to 4f-itinerant and 4f-localized electronic structure calculations, using a new algorithm for extracting quantum oscillation information from calculated band energies, and conclude that the Yb 4f quasi-hole remains itinerant over the entire measured field range, with the behaviour at H0 caused by a Fermi surface Lifshitz transition. My measurements are the first to directly track the Fermi surface of YbRh2Si2 across this field range, and rule out the 4f localization transition/crossover that was previously proposed to occur at H0.
22

Electronic States of Heavy Fermion Metals in High Magnetic Fields

Rourke, Patrick Michael Carl 25 September 2009 (has links)
Heavy fermion metals often exhibit novel electronic states at low temperatures, due to competing interactions and energy scales. In order to characterize these states, precise determination of material electronic properties, such as the Fermi surface topology, is necessary. Magnetic field is a particularly powerful tool, since it can be used as both a tuning parameter and probe of the fundamental physics of heavy fermion compounds. In CePb3, I measured magnetoresistance and torque for 23 mK ≤ T ≤ 400 mK, 0 T ≤ H ≤ 18 T, and magnetic field rotated between the (100), (110), and (111) directions. For H||(111), my magnetoresistance results show a decreasing Fermi liquid temperature range near Hc, and a T^2 coefficient that diverges as A(H) ∝ |H −Hc|^−α, with Hc ~ 6 T and α ~ 1. The torque exhibits a complicated dependence on magnetic field strength and angle. By comparison to numerical spin models, I find that the “spin-flop” scenario previously thought to describe the physics of CePb3 does not provide a good explanation of the experimental results. Using novel data acquisition software that exceeds the capabilities of a traditional measurement set-up, I measured de Haas–van Alphen oscillations in YbRh2Si2 for 30 mK ≤ T ≤ 600 mK, 8 T ≤ H ≤ 16 T, and magnetic field rotated between the (100), (110), and (001) directions. The measured frequencies smoothly increase as the field is decreased through H0 ≈ 10 T. I compared my measurements to 4f-itinerant and 4f-localized electronic structure calculations, using a new algorithm for extracting quantum oscillation information from calculated band energies, and conclude that the Yb 4f quasi-hole remains itinerant over the entire measured field range, with the behaviour at H0 caused by a Fermi surface Lifshitz transition. My measurements are the first to directly track the Fermi surface of YbRh2Si2 across this field range, and rule out the 4f localization transition/crossover that was previously proposed to occur at H0.

Page generated in 0.0587 seconds