• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 295
  • 128
  • 34
  • 31
  • 11
  • 10
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 638
  • 638
  • 150
  • 127
  • 117
  • 113
  • 109
  • 94
  • 90
  • 81
  • 76
  • 73
  • 60
  • 59
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Spin Dynamics and Magnetic Multilayers

Skubic, Björn January 2007 (has links)
<p>Theoretical studies based on first-principles theory are presented for a number of different magnetic systems. The first part of the thesis concerns spin dynamics and the second part concerns properties of magnetic multilayers. The theoretical treatment is based on electronic structure calculations performed by means of density functional theory.</p><p>A method is developed for simulating atomistic spin dynamics at finite temperatures, which is based on solving the equations of motion for the atomic spins by means of Langevin dynamics. The method relies on a mapping of the interatomic exchange interactions from density functional theory to a Heisenberg Hamiltonian. Simulations are performed for various magnetic systems and processes beyond the reach of conventional micromagnetism. As an example, magnetization dynamics in the limit of large magnetic and anisotropy fields is explored. Moreover, the method is applied to studying the dynamics of systems with complex atomic order such as the diluted magnetic semiconductor MnGaAs and the spin glass alloy CuMn. The method is also applied to a Fe thin film and a Fe/Cr/Fe trilayer system, where the limits of ultrafast switching are explored. Current induced magnetization dynamics is investigated by calculating the current induced spin-transfer torque by means of density functional theory combined with the relaxation time approximation and semi-classical Boltzmann theory. The current induced torque is calculated for the helical spin-density waves in Er and fcc Fe, where the current is found to promote a rigid rotation of the magnetic order.</p><p>Properties of magnetic multilayers composed of magnetic and nonmagnetic layers are investigated by means of the Korringa-Kohn-Rostocker interface Green's function method. Multilayer properties such as magnetic moments, interlayer exchange coupling and ordering temperatures are calculated and compared with experiments, with focus on understanding the influence of interface quality. Moreover, the influence on the interlayer exchange coupling of alloying the nonmagnetic spacer layers with small amounts of a magnetic impurity is investigated.</p>
352

Electronic Transport in Strained Materials

Dziekan, Thomas January 2008 (has links)
<p>In this thesis the conductivity of strained materials has been investigated using density functional theory and a semiclassical transport theory based on the Boltzmann equation.</p><p>In transition metals trends are reproduced without adjustable parameters. The introduction of one temperature dependent cross section allowed the reproduction of resistivity trends between 10 and 1000K.</p><p>The effect of strain on transition metals in bcc and fcc structure was studied deforming the unit cell along the tetragonal deformation path. The anisotropy of the conductivity varied on wide range of the c/a-ratio. The orbitals at the Fermi level determined the principal behavior. Pairs of elements with permutated number of electrons and holes in the 4d band showed similar behavior. The concept of the tetragonal deformation was also applied on semiconductors.</p><p>The deformation of Vanadium in X/V superlattices (X=Cr,~Fe,~Mo) due to Hydrogen loading depends on the properties of X. It was found that counteracting effects due to the presence of Hydrogen influence the conductivity.</p><p>It is shown that a small magnetic moment of the V host reduces the hydrogen solubility. Depending on the magnitude of the tetragonal distortion of V, the hydrogen dissolution becomes favored for larger moments.</p><p>Finally, extra charge filling of the bandstructure of Cr and Mo decreases the Fermi velocity and increases the density of states at the Fermi energy.</p>
353

A Theoretical Study of Magnetism in Nanostructured Materials

Bergman, Anders January 2006 (has links)
A first-principles linear scaling real-space method for investigating non-collinear magnetic behaviour of nanostructured materials has been developed. With this method, the magnetic structures of small supported transition metal clusters have been examined. The geometric constraints imposed on the clusters by the underlying surface is found to cause non-collinear behaviour for V, Cr, and Mn clusters on Cu(111). Fe clusters supported on Cu and Ni have been studied and both spin and orbital moments are found to be enhanced for the Fe atoms, which is attributed to the recuced symmetry present at the surface. Atoms in Co clusters have been found to order antiferromagnetically, and some times in a non-collinear fasion, when deposited on a W surface. Small clusters of fcc Fe embedded in Cu have been examined and a new type of ordering, not present in larger fcc Fe systems was found. Several theoretical studies of Fe and Co based nanostructures consisting of multilayers or embedded clusters have been conducted, with the aim of predicting high moment materials for use in data storage applications. In agreement with previous experiments an enhancement of the magnetic moment is found compared to the magnetic moment of bcc Fe. The enhancement has been shown to be caused by increased spin moments for Fe atoms in close proximity with Co atoms, and this enhancement depends on the number of Co neighbours. As a result of these studies, a possible method of increasing the magnetic moment of cluster based materials has been proposed. Fermi surface analysis have been performed both on bulk materials, in order to investigate mechanisms for stabilizing non-collinear magnetic states, and in layered structures where the effect of the Fermi surface on the interlayer exchange coupling has been investigated. In addition to the development of a real-space electronic structure method for non-collinear magnetism, a density matrix purification method has been implemented in the framework of linear muffin-tin orbitals.
354

Non-collinear Magnetism in d- and f-electron Systems

Lizárraga Jurado, Raquel January 2006 (has links)
In this thesis, non-collinear magnetism has been studied by using density functional theory and the augmented plane wave method with local orbitals (APW+lo). Two conditions for non-collinear instabilities have been identified in this thesis. First, the Fermi energy should cut through both spin up and down states. Secondly, strong nesting between the spin up and spin down Fermi surfaces is needed. The two criteria described here can be fulfilled by tuning the exchange-splitting and/or by modifying the volume. Calculations on several elements; bcc V, bcc and fcc Mn, bcc Fe, bcc and fcc Co, and bcc and fcc Ni show that a non-collinear state can be stabilized provided that the criteria discussed above are met. More complex materials have also been analyzed in terms of these two criteria. The substitutional alloys TlCo2Se2-xSx are found in experiments to possess spin spiral structures for x = {0-1.5} and at a concentration x = 1.75 the alloys become ferromagnetic. As S takes the place of Se in the crystal structure the distance between the Co layers is reduced and the turn angle of the spin spiral becomes smaller until it totally vanishes at x = 1.75. This thesis show that the evolution of the magnetic structure in these alloys is the consequence of a modification of the distance between Co layers, which induces a change in the interlayer exchange coupling. Fermi surfaces have been analyzed in TbNi5 in order to determine nesting features which would be responsible for the magnetic spin spiral observed in this material. The electronic structure of CeRhIn5 is also reported in this thesis. Furthermore, the 3-k magnetic structure of UO2 was investigated and the crystal field levels were calculated. Transition metal systems such as Fe in the superconducting high-pressure hcp phase and in the fcc crystal structure were also studied. The results obtained for fcc Fe are in accordance with previous reports. However the paramagnetic state in hcp Fe is found to be more stable than the antiferromagnetic configurations discussed earlier in the literature as being favored in the volume range where the hcp phase is stable and superconductivity appears (~ 15 GPa). The complex non-collinear magnetic structure in Mn3IrSi was calculated and the results are found to be in good agreement with experiments.
355

Spin Dynamics and Magnetic Multilayers

Skubic, Björn January 2007 (has links)
Theoretical studies based on first-principles theory are presented for a number of different magnetic systems. The first part of the thesis concerns spin dynamics and the second part concerns properties of magnetic multilayers. The theoretical treatment is based on electronic structure calculations performed by means of density functional theory. A method is developed for simulating atomistic spin dynamics at finite temperatures, which is based on solving the equations of motion for the atomic spins by means of Langevin dynamics. The method relies on a mapping of the interatomic exchange interactions from density functional theory to a Heisenberg Hamiltonian. Simulations are performed for various magnetic systems and processes beyond the reach of conventional micromagnetism. As an example, magnetization dynamics in the limit of large magnetic and anisotropy fields is explored. Moreover, the method is applied to studying the dynamics of systems with complex atomic order such as the diluted magnetic semiconductor MnGaAs and the spin glass alloy CuMn. The method is also applied to a Fe thin film and a Fe/Cr/Fe trilayer system, where the limits of ultrafast switching are explored. Current induced magnetization dynamics is investigated by calculating the current induced spin-transfer torque by means of density functional theory combined with the relaxation time approximation and semi-classical Boltzmann theory. The current induced torque is calculated for the helical spin-density waves in Er and fcc Fe, where the current is found to promote a rigid rotation of the magnetic order. Properties of magnetic multilayers composed of magnetic and nonmagnetic layers are investigated by means of the Korringa-Kohn-Rostocker interface Green's function method. Multilayer properties such as magnetic moments, interlayer exchange coupling and ordering temperatures are calculated and compared with experiments, with focus on understanding the influence of interface quality. Moreover, the influence on the interlayer exchange coupling of alloying the nonmagnetic spacer layers with small amounts of a magnetic impurity is investigated.
356

A Theoretical Treatise on the Electronic Structure of Designer Hard Materials

Hugosson, Håkan Wilhelm January 2001 (has links)
The subject of the present thesis is theoretical first principles electronic structure calculations on designer hard materials such as the transition metal carbides and oxides. The theoretical investigations have been made in close collaboration with experimental research and have addressed both bulk electronic properties and surface electronic properties of the materials. Among the bulk studies are investigations on the effects of substoichiometry on the relative phase stabilities and the electronic structure of several phases of MoC and the nature of the resulting vacancy peaks. The changes in phase stabilities and homo-geneity ranges in the group IV to VI transition metal carbides have been studied and explained, from calculations of the T=0 energies of formation and cohesive energies. The anomalous volume behavior and phase stabilities in substoichiometric TiC was studied including effects of local relaxations around the vacancy sites. The vacancy ordering problem in this compound was also studied by a combination of electronic structure calculations and statistical physics. The studies of the surface electronic properties include research on the surface energies and work functions of the transition metal carbides and an investigation on the segregation of transition metal impurities on the TiC (100) surface. Theoretical studies with the aim to facilitate the realization of novel designer hard materials were made, among these a survey of means of stabilizing potentially super-hard cubic RuO2, studying the effects of alloying, substoichiometry and lattice strains. A mechanism for enhancing hardness in the industrially important hard transition metal carbides and nitrides, from the discovery of multi-phase/polytypic alloys, has also been predicted from theoretical calculations.
357

Augmented Planewaves, Developments and Applications to Magnetism

Sjöstedt, Elisabeth January 2002 (has links)
The present thesis concerns method development and applications in the field of first principles electronic structure calculations. Augmented planewaves combine the simple planewaves with exact solutions of the Schrödinger equation for a spherical potential. This combination yields a very good set of basis functions for describing the electronic structure everywhere in a crystal potential. In the present work, developments of the original augmented planewave (APW) method are presented. It is shown that the exact APW eigenvalues can be found using information from the eigenvalues of the APW secular matrix. This provides a more efficient scheme to solve the APW eigenvalue problem, than the traditional evaluation of the secular determinant. Further, a new way of linearizing the APW method is presented and compared to the traditional linearized APW method (LAPW). Using a combination of the original APW basis functions and the so called local orbitals (lo), the APW+lo linearization is found to reproduce the results of the LAPW method, but already at a smaller basis set size. Another advantage of the new linearization is a faster convergence of forces, with respect to the basis set size, as compared to the LAPW method. The applications include studies of the non-collinear magnetic configuration in the fcc-based high-temperature phase of iron, γ-Fe. The system is found to be extremely sensitive to volume changes, as well as to a tetragonal distortion of the cubic unit cell. A continuum of degenerate spin spiral configurations, including the global energy minimum, are found for the undistorted crystal. The in-plane anisotropy of the ideal interface between a ferromagnetic layer of bcc Fe and the semiconducting ZnSe crystal is also investigated. In contrast to the four-fold symmetric arrangement of the atoms at the interface, the in-plane magnetic anisotropy displays a large uniaxiality. The calculated easy axes are in agreement with experiments for both Se and Zn terminated interfaces. In addition, calculations of the hyperfine parameters were performed for Li intercalated battery materials.
358

Structural stability of solids from first principles theory

Magyari-Köpe, Blanka January 2002 (has links)
No description available.
359

Electronic Transport in Materials

Meded, Velimir January 2005 (has links)
Transport properties within the Boltzmann transport equation for metallic multi-layer structures as well as bulk materials, were the prime topic of this work. Ab initio total energy calculations for Hydrogen loaded metallic multi-layers were performed in order to shed some light onto problem of H depleted layers at the interfaces that have been experimentally observed. It was explained in connection with structural relaxation of the interface layers. Further on conductivity behavior of Fe/V vs. Mo/V during Hydrogen load was discussed. The difference in, on first sight, rather similar multi-layer structures was explained by the magnitude of Hydrogen induced Vanadium expansion. Problem of variation of conductivity with changed c/a ratio of metals and semiconductors in general was addressed as well. The variations due to change of the Fermi surface of the corresponding materials were observed as well as some intriguing general patterns. The phenomenon could be regarded as piezoresistivity on electronic structure level. For the 3d transition metals variation of conductivity/resistivity through the period was studied. A possible explanation for anomalous behavior of Manganese resistivity due to its much greater lattice constant in comparison to its neighbors in the period is presented. Field of disordered alloys and low dimensional magnetism was touched by discussing Mo/Ru formation energy as well as magnetic nano-wires grown on surfaces. All total energy calculations as well as band structure calculations were performed by using Density Functional Theory based numerical computations. A short but comprehensive review of most common linear-response electron transport techniques is given.
360

Density Functional Theory Applied to Materials for Spintronics

Iusan, Diana Mihaela January 2010 (has links)
The properties of dilute magnetic semiconductors have been studied by combined ab initio, Monte Carlo, and experimental techniques. This class of materials could be very important for future spintronic devices, that offer enriched functionality by making use of both the spin and the charge of the electrons. The main part of the thesis concerns the transition metal doped ZnO. The role of defects on the magnetic interactions in Mn-doped ZnO was investigated. In the presence of acceptor defects such as zinc vacancies and oxygen substitution by nitrogen, the magnetic interactions are ferromagnetic. For dilute concentrations of Mn (~ 5%) the ordering temperature of the system is low, due to the short ranged character of the exchange interactions and disorder effects. The clustering tendency of the Co atoms in a ZnO matrix was also studied. The electronic structure, and in turn the magnetic interactions among the Co atoms, is strongly dependent on the exchange-correlation functional used. It is found that Co impurities tend to form nanoclusters and that the interactions among these atoms are antiferromagnetic within the local spin density approximation + Hubbard U approach. The electronic structure, as well as the chemical and magnetic interactions in Co and (Co,Al)-doped ZnO, was investigated by joined experimental and theoretical techniques. For a good agreement between the two, approximations beyond the local density approximation must be used. It is found that the Co atoms prefer to cluster within the semiconducting matrix, a tendency which is increased with Al co-doping. We envision that it is best to describe the system as superparamagnetic due to the formation of  Co nanoclusters within which the interactions are antiferromagnetic. The magnetic anisotropy and evolution of magnetic domains in Fe81Ni19/Co(001) superlattices were investigated both experimentally, as well as using model spin dynamics. A magnetic reorientation transition was found.

Page generated in 0.1126 seconds