Spelling suggestions: "subject:"electronics anda electrical engineering."" "subject:"electronics anda electrical ingineering.""
531 |
Elektrodinaminių lėtinimo įtaisų tyrimas taikant lygiagrečiąsias kompiuterines sistemas / Investigation of the electrodynamic retard devices using parallel computer systemsPomarnacki, Raimondas 06 January 2012 (has links)
Disertacijoje nagrinėjamos mikrobangų įtaisų analizės ir sintezės proble-mos, taikant lygiagrečiąsias kompiuterines sistemas. Pagrindiniai tyrimo objektai yra daugialaidės mikrojuostelinės linijos ir meandrinės mikrojuostelinės vėlinimo linijos. Šie objektai leidžia perduoti, sinchronizuoti bei vėlinti siunčiamus signalus ir yra neatsiejama dalis daugelio mikrobangų prietaisų. Jų operatyvi ir tiksli analizė bei sintezė sąlygoja įtaisų kūrimo spartinimą. Pagrindinis disertacijos tikslas – sukurti lygiagrečiąsias metodikas ir algoritmus, skirtus sparčiai ir tiksliai atlikti minėtų linijų analizę ir sintezę. Sukurtų algoritmų ir metodikų taikymo sritis – mikrobangų įtaisų modeliavimo ir automatizuoto projektavimo progra-minė įranga. / An analysis using numerical methods can calculate electrical and construction characteristics parameters of microwave devices quite accurately. However, numerical methods require a lot of computation resources and time for calculations to be made. Rapid perfection of the computer technologies and software with implementation of the numerical methods has laid down the conditions to the rapid design of the microwave devices using computers.
|
532 |
Melizmų sintezė dirbtinių neuronų tinklais / Melisma Synthesis Using Artificial Neural NetworksLeonavičius, Romas 12 January 2007 (has links)
Modern methods of speech synthesis are not suitable for restoration of song signals due to lack of vitality and intonation in the resulted sounds. The aim of presented work is to synthesize melismas met in Lithuanian folk songs, by applying Artificial Neural Networks. An analytical survey of rather a widespread literature is presented. First classification and comprehensive discussion of melismas are given. The theory of dynamic systems which will make the basis for studying melismas is presented and finally the relationship for modeling a melisma with nonlinear and dynamic systems is outlined. Investigation of the most widely used Linear Prediction Coding method and possibilities of its improvement. The modification of original Linear Prediction method based on dynamic LPC frame positioning is proposed. On its basis, the new melisma synthesis technique is presented. Developed flexible generalized melisma model, based on two Artificial Neural Networks – a Multilayer Perceptron and Adaline – as well as on two network training algorithms – Levenberg- Marquardt and the Least Squares error minimization – is presented. Moreover, original mathematical models of Fortis, Gruppett, Mordent and Trill are created, fit for synthesizing melismas, and their minimal sizes are proposed. The last chapter concerns experimental investigation, using over 500 melisma records, and corroborates application of the new mathematical models to melisma synthesis of one performer.
|
533 |
Melizmų sintezė dirbtinių neuronų tinklais / Melisma Synthesis Using Artificial Neural NetworksLeonavičius, Romas 12 January 2007 (has links)
Modern methods of speech synthesis are not suitable for restoration of song signals due to lack of vitality and intonation in the resulted sounds. The aim of presented work is to synthesize melismas met in Lithuanian folk songs, by applying Artificial Neural Networks. An analytical survey of rather a widespread literature is presented. First classification and comprehensive discussion of melismas are given. The theory of dynamic systems which will make the basis for studying melismas is presented and finally the relationship for modeling a melisma with nonlinear and dynamic systems is outlined. Investigation of the most widely used Linear Prediction Coding method and possibilities of its improvement. The modification of original Linear Prediction method based on dynamic LPC frame positioning is proposed. On its basis, the new melisma synthesis technique is presented. Developed flexible generalized melisma model, based on two Artificial Neural Networks – a Multilayer Perceptron and Adaline – as well as on two network training algorithms – Levenberg- Marquardt and the Least Squares error minimization – is presented. Moreover, original mathematical models of Fortis, Gruppett, Mordent and Trill are created, fit for synthesizing melismas, and their minimal sizes are proposed. The last chapter concerns experimental investigation, using over 500 melisma records, and corroborates application of the new mathematical models to melisma synthesis of one performer.
|
Page generated in 0.1098 seconds