• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 8
  • 8
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Topographical Enhancement of Cell Adhesion on Poorly Adhesive Materials

Muniz Maisonet, Maritza 16 September 2015 (has links)
The overall thrust of this dissertation is to gain a fundamental understanding of the synergistic effects between surface topography and chemical functionality of poorly adhesive materials on enhancing the adhesion of mouse embryonic fibroblasts. Cellular response to surface topography and chemical functionality have been extensively studied on their own providing valuable information that helps in the design of new and improved biomaterials for tissue engineering applications. However, there is a lack of understanding of the synergistic effect of microscale and nanoscale topography with chemical functionality and the relative impact and contribution of each in modulating cellular behavior. By understanding the relationship between these cues, in particular using materials that are poorly adhesive, this study will provide new clues as to how cells adapt to their environment and also suggest new dimensions of biomaterial design for fine-tuning cellular control. A microstructure that combined non adhesive materials with defined surface topography and surface chemistry is presented, to assess and correlate the enhancement of mouse embryonic fibroblasts cell adhesion and spreading. Poly (N-isopropylacrylamide) or PNIPAAm electrospun fibers were overlaid on PNIPAAm thin films (100 nm) at various time points to investigate the role of topography on such coatings by keeping the chemical functionality the same. After doing this, several topographical patterns were developed, spanning from sparse to dense fiber mats, and cell adhesion strongly depended on the relative available areas for attachment on either the fibers or the supporting surface. To gain a better understanding of this finding, two surface chemistries, non-adhesive (self-assembled monolayer of polyethylene glycol (PEGSAM) alkanethiol on gold) or an adhesive coating (3-aminopropyltriethoxysilane (APTES) on glass) with well characterized adhesive properties were included in this study to assess the effect of topographical cues provided by the PNIPAAm electrospun fibers on cellular responses. With the deposition of the PNIPAAm fibers onto a PEGSAM surface, cell adhesion increased to almost 100%, and unlike the PNIPAAm surface, cell spreading was significantly enhanced. With the deposition of PNIPAAm fibers onto APTES, both cell adhesion and spreading were unaffected up to 60% fiber coverage. For both surfaces, PNIPAAm fiber densities above 60% coverage lead to adhesion and spreading independent of the underlying surface. These findings indicate the presence of a sparse topographical feature can stimulate cell adhesion on a typically non-adhesive material, and that a chemical dissimilarity between the topographic features and the background enhances this effect through greater cell-surface interaction. In addition to the aforementioned studies, cell response was also assessed on PNIPAAm thin films coatings with thicknesses ranging from 100 nm to 7 nm. Cell adhesion and spreading was enhanced as the thickness of the thin film decreased. This change was more noticeable below 30 nm, wherein 7 nm shows the highest cell adhesion and spreading enhancement. The results reported are preliminary results and further experiments will be conducted, to support the data. It is believed that cellular response was enhanced due to a change in surface topography at the nanoscale level.
2

Behavior of Glioblastoma Cells in Co Culture with Rat Astrocytes on an Electrospun Fiber Scaffold

Grodecki, Joseph 08 August 2012 (has links)
No description available.
3

Behavior of Glioblastoma Cells in Co Culture with Rat Astrocytes on an Electrospun Fiber Scaffold

Grodecki, Joseph 25 September 2012 (has links)
No description available.
4

Study of Methods to Create and Control Electrospun Liquid Jets

Sunthornvarabhas, Jackapon 03 September 2009 (has links)
No description available.
5

Study of Take-Up Velocity in Enhancing Tensile Properties of Aligned Electrospun Nylon 6 Fibers

Najem, Johnny Fares January 2009 (has links)
No description available.
6

DESIGN, CHARACTERIZATION AND OPTIMIZATION OF NOVEL BIOINSPIRED SCAFFOLDS FOR SKELETAL MUSCLE REGENERATION

Naagarajan Narayanan (8081408) 31 January 2022 (has links)
Skeletal muscle injuries and muscle degenerative diseases pose significant challenges to the healthcare. Surgical interventions are restricted due to tissue availability, donor site morbidity and alterations to tissue biomechanics. Current cell-based therapies are hindered by low survival and long-term engraftment for the transplanted cells due to the lack of appropriate supportive microenvironment (cell niche) in the injured muscle. Therefore, there is a critical need for developing strategies that provide cellular and structural support in the regeneration of functional muscle. In the present work, a bioengineered cell niche mimicking the native skeletal muscle microenvironment has been developed for skeletal muscle regenerative engineering. It is hypothesized that the bioengineered scaffolds with appropriate structural and cell instructive properties will support myoblast alignment and function, as well as promote the myogenic responses in clinically relevant skeletal muscle injuries. The current work utilized a three-pronged approach to design biomaterial scaffolds to aid in skeletal muscle regeneration. In the first part, aligned poly(lactide-co-glycolide) (PLGA) fiber scaffolds mimicking the oriented muscle fiber microenvironment with fiber diameters of 335±154 nm (nanoscale), 1352±225 nm (microscale) and 3013±531 nm (microscale) were fabricated and characterized. Myoblasts were found to respond to fiber diameter as observed from the differences in cell alignment, cell elongation, cell spreading area, proliferation and differentiation. <i>In vivo</i> study demonstrated the potential of using microscale fiber scaffolds to improve myogenic potential in the <i>mdx</i> mouse model. In the second part, we designed, synthesized, and characterized an implantable glycosaminoglycan-based composite hydrogel consisting of hyaluronic acid, chondroitin sulfate and polyethylene glycol (HA-CS) with tailored structural and mechanical properties for skeletal muscle regeneration applications. We demonstrated that HA-CS hydrogels provided a suitable microenvironment for <i>in vitro</i> myoblast proliferation and differentiation. Furthermore, <i>in vivo</i> studies using a volumetric muscle loss model in the mouse quadriceps showed that HA-CS hydrogels integrated with the surrounding host tissue and facilitated <i>de novo</i> myofiber generation, angiogenesis, nerve innervation and minimized scar tissue formation. In the third part, we investigated the effects of PC12 secreted signaling factors in modulating C2C12 myoblast behavior. We showed that PC12 conditioned media modulated myoblast proliferation and differentiation in both 2D culture and 3D aligned electrospun fiber scaffold system in a dose dependent manner. We also demonstrated the biomimetic HA-CS hydrogel system enabled 3D encapsulation of PC12 cells secreting signaling factors and promoted survival and proliferation of myoblasts in co-culture. Further proteomics analysis identified a total of 2088 protein/peptides from the secretome of the encapsulated PC12 cells and revealed the biological role and overlapping functions of nerve secreted proteins for skeletal muscle regeneration, potentially through regulating myoblast behavior, nerve function, and angiogenesis. These set of experiments not only provide critical insight on exploiting the interactions between muscle cells and their microenvironment, but they also open new avenues for developing advanced bioengineered scaffolds for regenerative engineering of skeletal muscle tissues.<br>
7

Phytochemical Modification of Biodegradable/Biocompatible Polymer Blends with Improved Immunological Responses

Buddhiranon, Sasiwimon 06 December 2012 (has links)
No description available.
8

Compréhension de l’organisation moléculaire du poly(3-hexylthiophène) dans des mélanges polymères électrofilés et imprimés en 3D

Allen, Clarence 12 1900 (has links)
Les polymères conjugués semi-conducteurs sont des matériaux prometteurs pour des applications en optoélectronique et pour la fabrication de dispositifs de conversion d'énergie flexibles. Ils sont toutefois difficilement mis en forme en raison de la rigidité de leur structure. Le poly(3-hexylthiophène) (P3HT) est souvent utilisé comme polymère conjugué organique modèle. Sa mise en forme et ses propriétés peuvent être optimisées en l'incorporant dans une matrice polymère et en favorisant l’orientation moléculaire de ses chaînes. Cette orientation peut être induite dans un matériau lors de sa mise en forme, notamment lors de la préparation de fibres par électrofilage. Le projet vise à préparer des matériaux optimisant l'orientation du P3HT et à développer des outils pour caractériser l'organisation moléculaire du P3HT dans ces matériaux. Plus spécifiquement, la première étude consiste à comprendre l'effet de la matrice polymère sur le comportement du P3HT dans des nanofibres électrofilées. Celles-ci sont préparées en mélangeant le P3HT à une matrice polymère amorphe de poly(méthacrylate de méthyle) (PMMA) atactique ou fortement cristalline de poly(oxyde d'éthylène) (POE), et l’orientation des chaînes de P3HT est mesurée par spectroscopie Raman. Les résultats montrent que la capacité du POE à cristalliser, contrairement au PMMA, contraint les chaînes du P3HT à s'orienter le long de l’axe de la fibre, ce qui devrait améliorer ses propriétés de transport de charge. La calorimétrie différentielle à balayage et la microscopie optique et électronique à balayage permettent respectivement d'analyser les propriétés thermiques et d'imager la morphologie des nanomatériaux. La seconde étude est de développer une approche pour identifier la transition vitreuse du P3HT dans des nanofibres électrofilées et des impressions 3D composées d’un mélange P3HT-POE. Nous suivons alors l'évolution de l’état d'agrégation du P3HT par spectroscopie de fluorescence et le déplacement de sa bande Raman associée au mode d’élongation C=C sur une gamme de températures afin d'observer sa transition de phase vitreuse à l'échelle du nanoobjet individuel. Une preuve de concept est réalisée par des analyses sur des films minces à base de P3HT pour ensuite analyser les échantillons d’intérêt. Les résultats de spectroscopie Raman et de fluorescence sur les nanomatériaux de P3HT sont comparés aux analyses DSC sur les matériaux macroscopiques. Le projet améliorera d'une part notre capacité à caractériser les nanomatériaux de P3HT et, d'autre part, à en optimiser les propriétés. De manière plus générale, nos résultats conduiront à terme à une meilleure compréhension des relations structure-mise en forme-propriété-fonction des polymères conjugués, contribuant à la préparation de nouveaux matériaux électroniques organiques plus performants. / Conjugated polymers are promising semiconducting materials for applications in flexible optoelectronic and energy conversion devices. However, they are difficult to process because of the rigidity of their polymer backbone. Poly(3-hexylthiophene) (P3HT) is often used as a model organic conjugated polymer. Its processing and its properties can be improved by incorporating it into a polymer matrix and by favoring the molecular orientation of its chains. This orientation can be induced in a material during its processing, notably during the preparation of fibers by electrospinning. The project aims to prepare materials optimizing the orientation of P3HT and to develop tools to characterize the molecular organization of P3HT in these materials. More specifically, the first study consists of understanding the effect of the polymer matrix on the behaviour of P3HT in electrospun nanofibers. These nanofibers are prepared by mixing P3HT with an amorphous atactic poly(methyl methacrylate) (PMMA) or highly crystalline poly(ethylene oxide) (PEO) polymer matrix, and the orientation of the P3HT chains is measured by Raman spectroscopy. The results show that the capability of POE to crystallize, unlike PMMA, constrains the chains of P3HT to orient themselves along the fiber axis, which could improve its charge transport properties. Differential scanning calorimetry and optical and scanning electron microscopy make it possible, respectively, to analyze the thermal properties and to image the morphology of the nanomaterials. The second study is to develop an approach to identify the glass transition temperature of P3HT in electrospun nanofibers and 3D prints composed of a P3HT-PEO blend. We then follow the evolution of the aggregation state of P3HT by fluorescence spectroscopy and the shift of the Raman band associated with the C=C elongation mode over a range of temperatures to observe its glass transition temperature at the scale of the individual nanoobject. A proof of concept is first realized by carrying out analyses on thin films based on P3HT, followed by the analysis of the samples of interest. Raman and fluorescence spectroscopy results on P3HT-containing nanomaterials are compared to DSC analyses on macroscopic materials. The project will improve our ability to characterize P3HT nanomaterials and to optimize their properties. More generally, our results will ultimately lead to a better understanding of the structure-processing-property-function relationships of conjugated polymers, contributing to the preparation of new, more efficient organic electronic materials.

Page generated in 0.0543 seconds