• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 5
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electrostatic Self-Assembly of Biocompatible Thin Films

Du, Weiwei 12 June 2000 (has links)
The design of biocompatible synthetic surfaces is an important issue for medical applications. Surface modification techniques provide good approaches to control the interactions between living systems and implanted materials by modifying the surface characteristics. This thesis work demonstrates the feasibility and effectiveness of the novel and low-cost electrostatic self-assembly (ESA) technique for the manufacturing of biocompatible thin film coatings. The ESA process is based on the alternating adsorption of molecular layers of oppositely charged polymers/nanoparticles, and can be applied in the fabrication of well-organized multilayer thin films possessing various biocompatible properties. ESA multilayer assemblies incorporating various biomaterials including metal oxides and polymers were fabricated, the uniformity, thickness, layer-by-layer linearity, and surface morphology of the films were characterized by UV/vis spectroscopy, ellipsometry, and AFM imaging. Preliminary biocompatibility testing was conducted, concentrating on contact angle surface characterization and the in vitro measurements of protein adsorption. The use of Fourier Transform Infrared Reflection-Absorption Spectroscopy (FT-IRAS) for the investigation of the protein adsorption behavior upon the ESA multilayer films is presented. / Master of Science
2

Hemocompatible polymer thin films fabricated by Electrostatic Self-Assembly (ESA)

Cheung, Yeuk Kit 16 March 2005 (has links)
Stent is one of the coronary angioplasty techniques that expands the narrowed coronary arteries due to the accumulation of fat, cholesterol and other substances in the lumen of the arteries. The major complication of stent is restenosis. Current development of drug-eluting stents shows successfully reduce the occurrence of restenosis. Other than using drugs, electrostatic self assembled (ESAd) thin films may be the potential candidates to prevent restenosis. ESA is a process to fabricate thin films bases on the electrostatic attraction between two oppositely charges. We used this technique to fabricate four PVP films and four PEI films. All films were examined by XPS and AFM. XPS data showed our coatings were successfully fabricated on substrates. AFM images revealed PVP coating was uniform, but PEI coatings had different morphologies due to diffusion and pH during the process. Three preliminary hemocompatibility testes were performed to evaluate the hemocompatibility of the coatings. Platelet adhesion study showed the thin films inhibited platelet adhesion. All thin films were able to inhibit coagulation and were less cytotoxic. The studies suggested the ESA films were potentially hemocompatible. / Master of Science
3

Linear Optical Thin Films Formed by Electrostatic Self-Assembly

Luo, Zhaoju 16 June 2000 (has links)
The Electrostatic Self-Assembly (ESA) technique possesses great advantages over traditional thin film fabrication methods, making it an excellent choice for a number of applications in the fields of linear and nonlinear optics, electronics, sensing and surface coatings. The feasibility of fabricating linear optical interference filters by ESA methods is demonstrated in this thesis work. Basic single-anion/single-cation ESA films are synthesized and their optical parameters -- refractive index and average thickness for individual bilayer -- are investigated to provide a basis for the in-depth design of optical filters. High performance dielectric stack filters and narrowband and wideband antireflection coatings are designed using TFCalc simulation software and are fabricated by ESA. Both bulk film sensitivity and layer sensitivity to manufacturing errors are provided. The significant agreement between simulation and experiment demonstrates the strong capability of ESA to precisely control the refractive index and produce excellent thin film filters. The performance of optical thin film filters is largely enhanced compared to the results of previous methods. The experiment results indicate that the ESA process may be used to fabricate optical filters and other optical structures that require precise index profile control. / Master of Science
4

Study of Multimode Extrinsic Fabry-Perot Interferometric Fiber Optic Sensor on Biosensing

Zhao, Xin 07 March 2007 (has links)
The electrostatic self-assembly (ESA) method presents an effective application in the field of biosensing due to the uniform nanoscale structure. In previous research, a single mode fiber (SMF) sensor system had been investigated for the thin-film measurement due to the high fringe visibility. However, compared with a SMF sensor system, a multimode fiber (MMF) sensor system is lower-cost and has larger sensing area (the fiber core), providing the potential for higher sensing efficiency. In this thesis, a multimode fiber-optic sensor has been developed based on extrinsic Fabry-Perot interferometry (EFPI) for the measurement of optical thickness in self-assembled thin film layers as well as for the immunosensing test. The sensor was fabricated by connecting a multimode fiber (MMF) and a silica wafer. A Fabry-Perot cavity was formed by the reflections from the two interfaces of the wafer. The negatively charged silica wafer could be used as the substrate for the thin film immobilization scheme. The sensor is incorporated into the white-light interferometric system. By monitoring the optical cavity length increment, the self-assembled thin film thickness was measured; the immunoreaction between immunoglobulin G (IgG) and anti-IgG was investigated. / Master of Science
5

Label-free DNA Sequence Detection Using Oligonucleotide Functionalized Fiber Probe with a Miniature Protrusion

Wang, Xingwei 13 September 2006 (has links)
DNA is the substance that encodes the genetic information that cells need to replicate and to produce proteins. The detection of DNA sequences is of great importance in a broad range of areas including genetics, pathology, criminology, pharmacogenetics, public health, food safety, civil defense, and environmental monitoring. However, the established techniques suffer from a number of problems such as the bulky size, high equipment costs, and time-consuming algorithms so that they are limited to research laboratories and cannot be applied for in-vivo situations. In our research, we developed a novel sensing scheme for DNA sequence detection, featuring sequence specificity, cost efficiency, speed, and ease of use. Without the need for labels or indicators, it may be ideal for direct in-cell application. The principle is simple. With capture DNA immobilized onto the probe by layer-by-layer selfassembly, the hybridization of a complementary strand of target DNA increases the optical thickness of the probe. Three kinds of sensors were developed. The optical fiber tip sensor has been demonstrated with good specificity and high sensitivity for target DNA quantities as small as 1.7 ng. To demonstrate the potential of this structure for practical applications, tularemia bacteria were tested. Two other micrometric structures were designed with specific advantages for different applications. The micro-fiber Bragg grating interferometer (Micro-FBGI) has the intrinsic temperature compensation capability. The micro-intrinsic Fabry-Perot interferometer (Micro-IFPI)features simple signal processing due to its simple configuration. Successful DNA immobilization and hybridization have been demonstrated onto the 25μm Micro-IFPI. Both structures have great potential for nanometric protrusion, allowing future in-cell DNA direct detection. In addition, its quick response time leads to the potential for express diagnosis. What's more, the idea of nanoscale probe has a broad impact in scanning near-field optical microscopy (SNOM), intracellular surgery in cell sensing, manipulation, and injection. / Ph. D.
6

Electrostatic Self-Assembly of Linear and Nonlinear Optical Thin Films

Cooper, Kristie Lenahan 06 May 1999 (has links)
This dissertation demonstrates the feasibility of using novel electrostatic self-assembly (ESA) methods to fabricate linear and nonlinear optical thin films and components. The ESA process involves the layer-by-layer alternate adsorption of anionic and cationic complexes from aqueous solutions. Selection of the molecules in each layer, their orientation at the molecular level, and the order in which the layers are assembled determine the film's bulk optical, electronic, magnetic, thermal, mechanical and other properties. In this work, the capability of nanoscale control over film optical properties allowed the fabrication of complicated refractive index profiles required for linear optical interference filters. The inherent ordered nature of ESA films yielded extremely stable noncentrosymmetric thin films for second-order nonlinear optical applications. The ESA technique offers numerous advantages over conventional thin film fabrication methods and offers great potential in commercial applications such as reflectance and AR filters, EO waveguides and modulators and other optoelectronic devices. The structure of each monolayer in ESA films is dependent on the processing parameters, producing subsequent variations in bulk film properties both intentionally and incidentally. As this method is still in its infancy, variations in ESA processing methods, including process automation, are considered first in this document. These results allowed carefully controlled refractive index experiments and the synthesis of both step and graded index structures, several microns thick. Dielectric stack, Rugate, and antireflection optical interference filters were designed, synthesized and demonstrated. c(2) films of both commercially available polymer dyes and novel polymers designed specifically for the ESA process were demonstrated using second harmonic generation. UV/vis spectroscopy, ellipsometry and atomic force microscopy analysis are presented. / Ph. D.
7

Fiber-optic sensor for detection of hydrogen peroxide in PEM fuel cells

Botero-Cadavid, Juan F. 23 April 2014 (has links)
This dissertation presents chemical sensors that are based on an emerging optical fiber sensing technology for the determination of the presence and concentration of hydrogen peroxide (H2O2) at low concentrations. The motivation to determine hydrogen peroxide lies on the fact that this chemical species is generated as a by-product of the operation of hydrogen-based polymer electrolyte membrane fuel cells (PEMFCs), and the presence and formation of this peroxide has been associated with the chemical degradation that results in low durability of PEMFCs. Currently, there are no techniques that allow the hydrogen peroxide to be determined in situ in PEMFCs in a reliable manner, since the only report of this type of measurement was performed using electrochemical techniques, which can be affected by the environmental conditions and that can alter the proper operation of the PEMFCs. The sensors presented in this dissertation are designed to detect the presence and quantify hydrogen peroxide in solution at the conditions at which PEMFCs operate. Since they are made using fused silica optical fibers and are based on a spectroscopic technique to perform the detection of H2O2 , they are not affected by the electromagnetic fields or the harsh chemical environment inside PEMFCs. In addition, they are able to still detect the presence of H2O2 at the operating temperatures. The construction of the sensing film on the tip of an optical fiber and its small size (125 µm diameter), make the sensors here developed an ideal solution for being deployed in situ in PEMFCs, ensuring that they would be minimally invasive and that the operation of the fuel cell would not be compromised by the presence of the sensor. The sensors developed in this dissertation not only present design characteristics that are applicable to PEMFCs, they are also suitable for applications in other fields such as environmental, defense, and biological processes. / Graduate / 0548 / 0756 / 0791 / jfbotero@gmail.com
8

Fiber-optic sensor for detection of hydrogen peroxide in PEM fuel cells

Botero-Cadavid, Juan F. 23 April 2014 (has links)
This dissertation presents chemical sensors that are based on an emerging optical fiber sensing technology for the determination of the presence and concentration of hydrogen peroxide (H2O2) at low concentrations. The motivation to determine hydrogen peroxide lies on the fact that this chemical species is generated as a by-product of the operation of hydrogen-based polymer electrolyte membrane fuel cells (PEMFCs), and the presence and formation of this peroxide has been associated with the chemical degradation that results in low durability of PEMFCs. Currently, there are no techniques that allow the hydrogen peroxide to be determined in situ in PEMFCs in a reliable manner, since the only report of this type of measurement was performed using electrochemical techniques, which can be affected by the environmental conditions and that can alter the proper operation of the PEMFCs. The sensors presented in this dissertation are designed to detect the presence and quantify hydrogen peroxide in solution at the conditions at which PEMFCs operate. Since they are made using fused silica optical fibers and are based on a spectroscopic technique to perform the detection of H2O2 , they are not affected by the electromagnetic fields or the harsh chemical environment inside PEMFCs. In addition, they are able to still detect the presence of H2O2 at the operating temperatures. The construction of the sensing film on the tip of an optical fiber and its small size (125 µm diameter), make the sensors here developed an ideal solution for being deployed in situ in PEMFCs, ensuring that they would be minimally invasive and that the operation of the fuel cell would not be compromised by the presence of the sensor. The sensors developed in this dissertation not only present design characteristics that are applicable to PEMFCs, they are also suitable for applications in other fields such as environmental, defense, and biological processes. / Graduate / 0548 / 0756 / 0791 / jfbotero@gmail.com
9

Investigation into water-soluble perylene diimides for thin film formation

Weitzel, Corey R. January 1900 (has links)
Master of Science / Department of Chemistry / Daniel A. Higgins / Three water-soluble perylene diimides (PDIs) were investigated to examine differences in their thin film forming properties. The PDI thin films investigated in this thesis are formed in an electrostatic-self-assembled (ESA) layer-by-layer (LBL) process by the use of a dip coater. The three PDIs employed are sodium bis (sulfonatopropyl) perylene diimide (PDISO[subscript]3[superscript]2-), bis (trimethylammonioethyl) perylene diimide diiodide (PDIDI[superscript]2+), and N-(butoxypropyl)-N'-(2-(N,N,N-trimethylammonio)-ethyl) perylene-3,4,9,10-tetracarboxylic diimide iodide (C[subscript]7OPDI[superscript]+). Thin films were made by alternately depositing the PDIs with counter polyelectrolyte (PEs). The PEs employed were poly(diallyldimethylammonium chloride) (PDDA[superscript]+) and poly(acrylic acid) (PA[superscript]-), depending on the charge of the PDI. PDIs were determined to be aggregated in all three PDI precursor solutions. The fraction of PDI aggregated in each was found to be 0.972, 0.903, and 0.993, for the PDISO[subscript]3[superscript]2-, PDIDI[superscript]2+, and C[subscript]7OPDI[superscript]+, respectively. The C[superscript]7OPDI[superscript]+ solution was the most aggregated only having one charge group, which makes it more hydrophobic. Thin films prepared from the solutions all displayed an absorbance spectrum similar to the aggregated form. All the composites displayed linear growth in film thickness and fiber width with bilayer number. However, the three composites gave unique surface morphologies. The PDISO[subscript]3[supercript]2-[dot in middle of line]PDDA+ composite was found to incorporate highly curled intertwined fibers compared to the PDIDI[superscript]2+[dot in middle of line]PA[superscript]- composite, where the fibers were not intertwined. The fiber structure was found to change after 15 bilayers. This change in morphology was attributed to the fibers grafting together and overlapping causing the loss of original fiber structure. The two symmetric composites differed in the film thickness with the PDISO[subscript]3[superscript]2-[dot in middle of line]PDDA[superscript]+ being thicker than the PDIDI[superscript]2+[dot in middle of line]PA[superscript]- composite. This was attributed to the molecular weights (MW) of the polyelectrolytes investigated during thin film deposition, with the PDDA[superscript]+ having a much higher MW. C[subscript]7OPDI[superscript]+[dot in middle of line]PA[superscript]- thin film composite had a film thickness approximately equal to the PDISO[subscript]3[superscript]2-[dot in middle of line]PDDA[superscript]+ composite, indicating precursor aggregation also influences deposition rate. The C[subscript]7OPDI[superscript]+[dot in middle of line]PA[superscript]- composite incorporated wavy thin fibers that appeared aligned in the dipping direction. This alignment was visible for bulk samples in UV-vis absorption dichroism studies. The alignment was parallel to the dipping direction of the substrate.
10

Controlling Gold Nanoparticle Assembly through Particle-Particle and Particle-Surface Interactions

Kelley, John Joseph 28 August 2018 (has links)
No description available.

Page generated in 0.1219 seconds