• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 9
  • 9
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of characterisation methods for the components of the polymer electrolyte fuel cell

Ihonen, Jari January 2003 (has links)
In this work characterisation methods and fuel cell hardwarewere developed for studying the components of the polymerelectrolyte fuel cell (PEFC). Humidifiers and other componentswere tested in order to develop reproducible and reliableexperimental techniques. A set-up for testing larger cells andstacks was developed. A new type of polymer electrolyte membrane fuel cell wasdeveloped for laboratory investigations. Current collectormaterial and gas flow channels can easily be modified in thisconstruction. The electrode potentials can be measured at thegas backing layers, thereby allowing measurement of contactresistances. The use of a reference electrode is alsopossible. Contact resistances were studied in situ as a function oftime, clamping pressure, gas pressure and current density.Ex-situ measurements were used to validate the in-situ contactresistance measurements. The validity and error sources of theapplied in-situ measurement methods with reference electrodesand potential probes were studied using both computersimulations and experiments. An in-house membrane electrode assembly (MEA) productionline was developed. In-house produced MEAs were utilised inboth membrane degradation and mass transport studies. The durability testing of PVDF based membranes membranes wasstudied both by fuel cell experiments and ex-situ testing.Raman spectra were measured for used membranes. A current distribution measurement method was developed. Theeffect of inlet humidification and gas composition at thecathode side was studied. In addition, two different flow fieldgeometries were studied. The results of current distributionmeasurements were used to validate a PEFC model. Methods for characterising gas diffusion layer (GDL)performance by fuel cell testing and ex-situ measurements weredeveloped. The performance of GDL materials was tested withvarying cell compression and cathode humidity. Porosity, poresize distribution and contact angle were determined. Electricalcontact resistance, thermal impedance and gas permeabilitieswere measured at different compression levels. Development work on a stack with stainless steel net wascarried out as well as characterisation studies of differentstack components. Thermal impedances and flow fieldpermeability were measured. Mass transport limitations in the cathodes were studied byvarying the electrode thickness, partial pressure and humidityof oxygen. <b>Keywords:</b>polymer electrolyte membrane fuel cell (PEFC),contact resistance, clamping pressure, stainless steel,membrane degradation, current distribution, gas diffusionlayer, stack, thermal impedance, permeability.
2

Development of characterisation methods for the components of the polymer electrolyte fuel cell

Ihonen, Jari January 2003 (has links)
<p>In this work characterisation methods and fuel cell hardwarewere developed for studying the components of the polymerelectrolyte fuel cell (PEFC). Humidifiers and other componentswere tested in order to develop reproducible and reliableexperimental techniques. A set-up for testing larger cells andstacks was developed.</p><p>A new type of polymer electrolyte membrane fuel cell wasdeveloped for laboratory investigations. Current collectormaterial and gas flow channels can easily be modified in thisconstruction. The electrode potentials can be measured at thegas backing layers, thereby allowing measurement of contactresistances. The use of a reference electrode is alsopossible.</p><p>Contact resistances were studied in situ as a function oftime, clamping pressure, gas pressure and current density.Ex-situ measurements were used to validate the in-situ contactresistance measurements. The validity and error sources of theapplied in-situ measurement methods with reference electrodesand potential probes were studied using both computersimulations and experiments.</p><p>An in-house membrane electrode assembly (MEA) productionline was developed. In-house produced MEAs were utilised inboth membrane degradation and mass transport studies.</p><p>The durability testing of PVDF based membranes membranes wasstudied both by fuel cell experiments and ex-situ testing.Raman spectra were measured for used membranes.</p><p>A current distribution measurement method was developed. Theeffect of inlet humidification and gas composition at thecathode side was studied. In addition, two different flow fieldgeometries were studied. The results of current distributionmeasurements were used to validate a PEFC model.</p><p>Methods for characterising gas diffusion layer (GDL)performance by fuel cell testing and ex-situ measurements weredeveloped. The performance of GDL materials was tested withvarying cell compression and cathode humidity. Porosity, poresize distribution and contact angle were determined. Electricalcontact resistance, thermal impedance and gas permeabilitieswere measured at different compression levels.</p><p>Development work on a stack with stainless steel net wascarried out as well as characterisation studies of differentstack components. Thermal impedances and flow fieldpermeability were measured.</p><p>Mass transport limitations in the cathodes were studied byvarying the electrode thickness, partial pressure and humidityof oxygen.</p><p><b>Keywords:</b>polymer electrolyte membrane fuel cell (PEFC),contact resistance, clamping pressure, stainless steel,membrane degradation, current distribution, gas diffusionlayer, stack, thermal impedance, permeability.</p>
3

Fundamental Study Of Mechanical And Chemical Degradation Mechanisms Of Pem Fuel Cell Membranes

Yoon, Wonseok 01 January 2010 (has links)
One of the important factors determining the lifetime of polymer electrolyte membrane fuel cells (PEMFCs) is membrane degradation and failure. The lack of effective mitigation methods is largely due to the currently very limited understanding of the underlying mechanisms for mechanical and chemical degradations of fuel cell membranes. In order to understand degradation of membranes in fuel cells, two different experimental approaches were developed; one is fuel cell testing under open circuit voltage (OCV) with bi-layer configuration of the membrane electrode assemblies (MEAs) and the other is a modified gas phase Fenton's test. Accelerated degradation tests for polymer electrolyte membrane (PEM) fuel cells are frequently conducted under open circuit voltage (OCV) conditions at low relative humidity (RH) and high temperature. With the bi-layer MEA technique, it was found that membrane degradation is highly localized across thickness direction of the membrane and qualitatively correlated with location of platinum (Pt) band through mechanical testing, Infrared (IR) spectroscopy, fluoride emission, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS) measurement. One of the critical experimental observations is that mechanical behavior of membranes subjected to degradation via Fenton's reaction exhibit completely different behavior with that of membranes from the OCV testing. This result led us to believe that other critical factors such as mechanical stress may affect on membrane degradation and therefore, a modified gas phase Fenton's test setup was developed to test the hypothesis. Interestingly, the results showed that mechanical stress directly accelerates the degradation rate of ionomer membranes, implying that the rate constant for the degradation reaction is a function of mechanical stress in addition to commonly known factors such as temperature and humidity. Membrane degradation induced by mechanical stress necessitates the prediction of the stress distribution in the membrane under various conditions. One of research focuses was on the developing micromechanism-inspired continuum model for ionomer membranes. The model is the basis for stress analysis, and is based on a hyperelastic model with reptation-inspired viscous flow rule and multiplicative decomposition of viscoelastic and plastic deformation gradient. Finally, evaluation of the membrane degradation requires a fuel cell model since the degradation occurs under fuel cell operating conditions. The fuel cell model included structural mechanics models and multiphysics models which represents other phenomena such as gas and water transport, charge conservation, electrochemical reactions, and energy conservation. The combined model was developed to investigate the compression effect on fuel cell performance and membrane stress distribution.
4

A fully spray-coated fuel cell membrane electrode assembly using Aquivion ionomer with a graphene oxide/cerium oxide interlayer

Breitwieser, Matthias, Bayer, Thomas, Büchler, Andreas, Zengerle, Roland, Lyth, Stephen M., Thiele, Simon 27 October 2020 (has links)
A novel multilayer membrane electrode assembly (MEA) for polymer electrolyte membrane fuel cells (PEMFCs) is fabricated in this work, within a single spray-coating device. For the first time, direct membrane deposition is used to fabricate a PEMFC by spraying the short-side-chain ionomer Aquivion directly onto the gas diffusion electrodes. The fully sprayed MEA, with an Aquivion membrane 10 μm in thickness, achieved a high power density of 1.6 W/cm2 for H2/air operation at 300 kPaabs. This is one of the highest reported values for thin composite membranes operated in H2/air atmosphere. By the means of confocal laser scanning microscopy, individual carbon fibers from the gas diffusion layer are identified to penetrate through the micro porous layer (MPL), likely causing a low electrical cell resistance in the range of 150 Ω cm2 through the thin sprayed membranes. By spraying a 200 nm graphene oxide/cerium oxide (GO/CeO2) interlayer between two layers of Aquivion ionomer, the impact of the electrical short is eliminated and the hydrogen crossover current density is reduced to about 1 mA/cm2. The peak power density of the interlayer-containing MEA drops only by 10% compared to a pure Aquivion membrane of similar thickness.
5

Leveraging Halogen Interactions for the Improved Performance of Reverse Osmosis Membranes

Michael D Toomey (9761183) 11 December 2021 (has links)
<div> Here, the quartz crystal microbalance with dissipation monitoring (QCM-D) is employed to explore the interaction of the various free oxidant species with condensed PA model membranes in order to improve our understanding of how the interaction with these species affects rates of membrane chlorination and alter membrane structure. Molecular-scale mass uptake and changes in the dissipative nature of the of the model membranes as measured by the QCM is correlated to performance changes in interfacially polymerized PA reverse osmosis (RO) membranes. Leveraging newly gained insights from these measured interactions, new strategies are explored to improve flux and chlorine resistance using novel membrane structure and chemistry.<br></div>
6

Fiber-optic sensor for detection of hydrogen peroxide in PEM fuel cells

Botero-Cadavid, Juan F. 23 April 2014 (has links)
This dissertation presents chemical sensors that are based on an emerging optical fiber sensing technology for the determination of the presence and concentration of hydrogen peroxide (H2O2) at low concentrations. The motivation to determine hydrogen peroxide lies on the fact that this chemical species is generated as a by-product of the operation of hydrogen-based polymer electrolyte membrane fuel cells (PEMFCs), and the presence and formation of this peroxide has been associated with the chemical degradation that results in low durability of PEMFCs. Currently, there are no techniques that allow the hydrogen peroxide to be determined in situ in PEMFCs in a reliable manner, since the only report of this type of measurement was performed using electrochemical techniques, which can be affected by the environmental conditions and that can alter the proper operation of the PEMFCs. The sensors presented in this dissertation are designed to detect the presence and quantify hydrogen peroxide in solution at the conditions at which PEMFCs operate. Since they are made using fused silica optical fibers and are based on a spectroscopic technique to perform the detection of H2O2 , they are not affected by the electromagnetic fields or the harsh chemical environment inside PEMFCs. In addition, they are able to still detect the presence of H2O2 at the operating temperatures. The construction of the sensing film on the tip of an optical fiber and its small size (125 µm diameter), make the sensors here developed an ideal solution for being deployed in situ in PEMFCs, ensuring that they would be minimally invasive and that the operation of the fuel cell would not be compromised by the presence of the sensor. The sensors developed in this dissertation not only present design characteristics that are applicable to PEMFCs, they are also suitable for applications in other fields such as environmental, defense, and biological processes. / Graduate / 0548 / 0756 / 0791 / jfbotero@gmail.com
7

Fiber-optic sensor for detection of hydrogen peroxide in PEM fuel cells

Botero-Cadavid, Juan F. 23 April 2014 (has links)
This dissertation presents chemical sensors that are based on an emerging optical fiber sensing technology for the determination of the presence and concentration of hydrogen peroxide (H2O2) at low concentrations. The motivation to determine hydrogen peroxide lies on the fact that this chemical species is generated as a by-product of the operation of hydrogen-based polymer electrolyte membrane fuel cells (PEMFCs), and the presence and formation of this peroxide has been associated with the chemical degradation that results in low durability of PEMFCs. Currently, there are no techniques that allow the hydrogen peroxide to be determined in situ in PEMFCs in a reliable manner, since the only report of this type of measurement was performed using electrochemical techniques, which can be affected by the environmental conditions and that can alter the proper operation of the PEMFCs. The sensors presented in this dissertation are designed to detect the presence and quantify hydrogen peroxide in solution at the conditions at which PEMFCs operate. Since they are made using fused silica optical fibers and are based on a spectroscopic technique to perform the detection of H2O2 , they are not affected by the electromagnetic fields or the harsh chemical environment inside PEMFCs. In addition, they are able to still detect the presence of H2O2 at the operating temperatures. The construction of the sensing film on the tip of an optical fiber and its small size (125 µm diameter), make the sensors here developed an ideal solution for being deployed in situ in PEMFCs, ensuring that they would be minimally invasive and that the operation of the fuel cell would not be compromised by the presence of the sensor. The sensors developed in this dissertation not only present design characteristics that are applicable to PEMFCs, they are also suitable for applications in other fields such as environmental, defense, and biological processes. / Graduate / 0548 / 0756 / 0791 / jfbotero@gmail.com
8

Modeling chemical degradation and proton transport in perfluorosulfonic acid ionomers

Kumar, Milan 01 December 2011 (has links)
The ionomer-membrane interface in a membrane electrode assembly connects the catalyst and membrane and allows hydrated protons to move between the catalyst and membrane. The continuous operation of the polymer membrane electrolyte fuel cell at high temperature and/or in frequent freeze/thaw cycles leads to membrane degradation and delamination of the interface, which lower the proton conductivity. In this dissertation, we modeled the chemical degradation and proton conductivity of perfluorosulfonic acid (PFSA) ionomers by ab initio calculations and macroscopic modeling. All ab initio calculations were performed using Gaussian 03 suites of program by employing B3LYP/6-311++G** method/basis set. The macroscopic modeling involves nonequilibrium thermodynamics. The results show that PFSA membranes can degrade both via side-chain and backbone in the presence of hydroxyl radical. The energetics of homolytic bond cleavage show that the C–S bond in the side-chain is the weakest link and breaks exothermally in the presence of hydroxyl radical. The C–S bond in the membrane fragment radical can break at low activation energy. The side-chain degradation also leads to the split of the backbone into two parts. The backbone degradation starts with the reaction of –COOH impurities in the backbone with the hydroxyl radical, which has the lowest activation energy, and follows an “unzipping mechanism”. The reactions in this mechanism are exothermic. The channels in the interface were modeled as cylindrical pores and the anionic charges were fixed on the pore wall. The analytical expression of proton conductivity was derived from the evolution equations for mass and momentum of hydronium ions by using an order of magnitude analysis. The results show that the conductivity increases with increasing water content and pore radius. The conductivity usually increases on decreasing the separation distance between sulfonates on the length and decreases with decreasing sulfonates separation distance on the circumference. The conductivity of the two pores, one of the interface and the other of the membrane, is closer to the conductivity of the pore with the lowest conductivity and its magnitude depends on the relative radius and length of the pores.
9

Hydrogen peroxide sensing with prussian blue-based fiber-optic sensors

Akbari Khorami, Hamed 03 October 2016 (has links)
Hydrogen peroxide (H2O2) is extensively used in a broad range of industrial and medical applications, such as aseptic processing of food and pharmaceuticals, disinfection, water treatment plants, and decontamination of industrial effluents. H2O2 is believed to be responsible for chemical degradation of polymer membranes in Polymer-Electrolyte-Membrane (PEM) fuel cells. Therefore, a versatile H2O2 sensor that functions in different environments with different conditions is of practical importance in various fields. This dissertation presents the fabrication of a fiber-optic H2O2 sensing probe (optrode) and its H2O2 sensing behavior in different conditions. An H2O2 optrode is fabricated using chemical deposition of Prussian blue (PB) onto the tip of a multimode optical fiber. Sensing tests are performed in aqueous solutions at a constant pH and different concentrations of H2O2. Sensing features of the optrode (i.e. repeatability, durability, and reproducibility) are assessed by performing multiple sensing tests with several optrodes. The results show the prepared optrode is able to detect concentrations of H2O2 in aqueous solutions at a constant pH of 4 and the optrode features a repeatable and durable response at this condition. The functionality of optrodes at different pH values is further investigated by performing additional sensing experiments. These experiments are carried out in aqueous solutions with different concentrations of H2O2 at different pH values (i.e. pH 2-7). The sensor detects the presence of H2O2 at a range of pH values. Sensing behavior of optrodes toward detection and measurement of H2O2 concentrations is studied at the pH value corresponding to an operating PEM fuel cell (i.e. pH 2). The optrode is able to detect concentrations of H2O2 at this condition with a repeatable and durable response. The stability of PB films, prepared through different conditions, is investigated to address the stability of optrodes at elevated temperatures. PB films are first deposited onto the glass slides through three different chemical processes, and then at different synthesis temperatures. The PB films are left in Phosphate-Buffer-Solutions (PBS) with pH 2 and at elevated temperatures for a day. Finally, PB films are characterized using Fourier transform infrared spectroscopy (FTIR) to analyze their stability following PBS processing at operating temperatures and pH value corresponding to an operating PEM fuel cell (i.e. 80 °C and pH 2). The results of these experiments illustrate the PB films prepared through the single-source precursor (SSP) technique and at synthesis temperatures above 60 °C remain stable after the PBS processing. The proposed optrode shows reliable sensing behavior toward detection and measurement of H2O2 concentrations in aqueous solutions at different conditions. The prepared optrode has the potential for being developed and used in different industrial and medical fields, as well as an operating PEM fuel cell, to detect and measure H2O2 concentrations. / Graduate / 0794 / 0548 / 0485 / hakbarik@uvic.ca

Page generated in 0.1888 seconds