Spelling suggestions: "subject:"elektrochemische bearbeitung"" "subject:"elektrochemische vorbearbeitung""
1 |
Elektrochemische Prozesse an Eisenoberflächen bei extremen anodischen StromdichtenRosenkranz, Christian. Unknown Date (has links)
Universiẗat, Diss., 2005--Düsseldorf.
|
2 |
Evaluation of On-Machine Gap Measurement Strategies in Jet-Electrochemical MachiningYahyavi Zanjani, Matin, Hackert-Oschätzchen, Matthias, Martin, André, Schubert, Andreas 05 February 2018 (has links) (PDF)
Jet Electrochemical Machining (Jet-ECM) is a manufacturing technique that applies a free electrolyte jet to generate the desired shapes [1]. Since the principle of the technique is the same as other techniques of Electrochemical Machining where the material removal takes place based on the anodic dissolution of workpiece, the working distance, which is the distance between nozzle’s front surface and the workpiece surface, is one important parameter of the process. The working distance affects the current density and consequently the geometry removal.
The control of the working distance can be done based on the data gathered before and during machining by surface measurement [2]. This measurement usually is done by using electrostatic probing to detect a limited amount of points of the initial workpiece surface. Since electrostatic probing is comparatively slow, laser triangulation represents an alternative technique to detect a larger amount of points before machining within significantly shorter time [3]. In addition to electrostatic probing and laser triangulation, the actual working distance can be measured during the machining process to realize constant working distance. This can be done by detecting electrical signals like the actual total current. This method can be combined with pre-machining measurement by laser triangulation in order to ensure the prevention of any collision between the nozzle and the workpiece.
In this study, on-machine metrology techniques for measuring the working gap as well as current measurements will be compared. Besides, the advantages and disadvantages of these techniques will be systematized. In further studies, the possibility of combining the techniques will be investigated to enhance Jet-ECM with more accurate measurement techniques.
|
3 |
Experimental Study on Jet Electrochemical Machining of Intersecting Single GroovesYahyavi Zanjani, Matin, Hackert‐Oschätzchen, Mattias, Martin, André, Schubert, Andreas 05 February 2018 (has links) (PDF)
Due to unique advantages of Jet Electrochemical Machining (Jet‐ECM) such as the absence of mechanical and thermal effects, there is an increasing demand for the implementation of the technology in industrial sectors. However, meeting the stringent quality requirements of the current technological level is a challenge in Jet‐ECM especially for complicated microstructures. Hence, the implementation of an adequate metrology system is necessary to minimise deviations and to enhance the process towards zero‐defect‐manufacturing. The metrology system should be capable of measuring the workpiece before machining in order to enable the machine to adjust the process parameters and to reach the desired micro‐structure. Post‐machining measurements to compare the machined part with the desired shape should be possible as well. This will enhance the machine to make corrections on the workpiece before delivery to the next section in a process chain. However, in order to reach the desired microstructures, the characteristics of workpiece like material properties and previously machined structures on the size and shape of the machined microstructure should be taken into consideration. This is done through the implementation of results of the fingerprint study into the process control. In this study the effects of previously machined single grooves which intersect the secondly machined groove on the size, shape and surface roughness are investigated. The previously machined groove was generated by milling or Jet‐ECM. Since at the intersections the
gap size changes and this lead to changes in current and current density, it is expected to observe changes in size and surface roughness. This investigation will show how grooves change at the intersections and whether the mentioned changes are significant. Besides, some suggestions will be provided in order to minimise the effects in Jet‐ECM of intersecting single grooves.
|
4 |
Deburring and Edge Shaping by Electrochemical Machining with Differentially Switched CurrentsPetzold, Tom, Hackert-Oschätzchen, Matthias, Martin, André, Schubert, Andreas 27 October 2020 (has links)
Manufacturing of components with complex internal features, e.g. for medical applications, aeronautics or automobile industry, is challenging. Those components are often machined in temporarily and locally separated production stages. As results of these separated stages form deviations and positioning errors increase, which lead to additional efforts for the quality assurance.
The technology aimed within the project SwitchECM is expected to allow the machining of different complex features of one workpiece in one single production stage and shall simultaneously allow a high precision. For this purpose, a multi-cathode system will be developed, in which separated cathodes can be switched with specific parameters, depending on the requirements of the pre-defined features.
This study will show the capability to machine the workpiece with different parameter sets but the same cathode and device as fundamental work for the machining with a multi-cathode system. Therefore the surface and dissolution characteristics for the material 1.4301 were used to design the process. The machining tasks were determined to deburring and edge shaping. In the experiments, the parameters voltage and working time were selected depending on the final geometry. It will be shown that the deburring task can be handled with nearly no edge shaping and the edge shaping task is suitable to adjust different edge geometries.
|
5 |
Evaluation of On-Machine Gap Measurement Strategies in Jet-Electrochemical MachiningYahyavi Zanjani, Matin, Hackert-Oschätzchen, Matthias, Martin, André, Schubert, Andreas 05 February 2018 (has links)
Jet Electrochemical Machining (Jet-ECM) is a manufacturing technique that applies a free electrolyte jet to generate the desired shapes [1]. Since the principle of the technique is the same as other techniques of Electrochemical Machining where the material removal takes place based on the anodic dissolution of workpiece, the working distance, which is the distance between nozzle’s front surface and the workpiece surface, is one important parameter of the process. The working distance affects the current density and consequently the geometry removal.
The control of the working distance can be done based on the data gathered before and during machining by surface measurement [2]. This measurement usually is done by using electrostatic probing to detect a limited amount of points of the initial workpiece surface. Since electrostatic probing is comparatively slow, laser triangulation represents an alternative technique to detect a larger amount of points before machining within significantly shorter time [3]. In addition to electrostatic probing and laser triangulation, the actual working distance can be measured during the machining process to realize constant working distance. This can be done by detecting electrical signals like the actual total current. This method can be combined with pre-machining measurement by laser triangulation in order to ensure the prevention of any collision between the nozzle and the workpiece.
In this study, on-machine metrology techniques for measuring the working gap as well as current measurements will be compared. Besides, the advantages and disadvantages of these techniques will be systematized. In further studies, the possibility of combining the techniques will be investigated to enhance Jet-ECM with more accurate measurement techniques.
|
6 |
Experimental Study on Jet Electrochemical Machining of Intersecting Single GroovesYahyavi Zanjani, Matin, Hackert‐Oschätzchen, Mattias, Martin, André, Schubert, Andreas 05 February 2018 (has links)
Due to unique advantages of Jet Electrochemical Machining (Jet‐ECM) such as the absence of mechanical and thermal effects, there is an increasing demand for the implementation of the technology in industrial sectors. However, meeting the stringent quality requirements of the current technological level is a challenge in Jet‐ECM especially for complicated microstructures. Hence, the implementation of an adequate metrology system is necessary to minimise deviations and to enhance the process towards zero‐defect‐manufacturing. The metrology system should be capable of measuring the workpiece before machining in order to enable the machine to adjust the process parameters and to reach the desired micro‐structure. Post‐machining measurements to compare the machined part with the desired shape should be possible as well. This will enhance the machine to make corrections on the workpiece before delivery to the next section in a process chain. However, in order to reach the desired microstructures, the characteristics of workpiece like material properties and previously machined structures on the size and shape of the machined microstructure should be taken into consideration. This is done through the implementation of results of the fingerprint study into the process control. In this study the effects of previously machined single grooves which intersect the secondly machined groove on the size, shape and surface roughness are investigated. The previously machined groove was generated by milling or Jet‐ECM. Since at the intersections the
gap size changes and this lead to changes in current and current density, it is expected to observe changes in size and surface roughness. This investigation will show how grooves change at the intersections and whether the mentioned changes are significant. Besides, some suggestions will be provided in order to minimise the effects in Jet‐ECM of intersecting single grooves.
|
7 |
Experimental Derivation of Process Input Parameters for Electrochemical Machining with Differentially Switched CurrentsMartin, André, Petzold, Tom, Hackert-Oschätzchen, Matthias, Meichsner, Gunnar, Schubert, Andreas 12 November 2019 (has links)
The manufacturing of components with complex internal features, e.g. for automobile industry, aeronautics or medical applications, is a significant challenge. Such components are often machined in temporarily and locally separated stages of production. Due to these separated stages, the form deviations and positioning errors increase, which leads to additional efforts for the quality assurance. The technology that shall be developed within the project SwitchECM is supposed to enable machining of components with differing complex features in one single production stage and shall simultaneously allow for high precision. For this purpose, a multi-cathode system will be developed, in which every single cathode can be switched with specific parameters. The specific switching parameters shall be adjusted according to the requirements of the pre-defined features.
For the manufacturing of different pre-defined features with one multi-cathode system the usage of pulsed direct current as well as continuous direct current shall be possible. Hence, removal experiments were carried out on 1.4301 stainless steel using a PEMCenter 8000 with varying feed rates and voltages at a pulsation frequency of 200 Hz. With this comparatively high frequency and a pulse duration of 4 ms pseudo direct current experiments are realized.
The results are compared to experiments with a more common pulse frequency of 50 Hz. The mass removal analyses show, in which degree the transferability of experimental results from pulsed current to pseudo direct current or rather direct current is feasible.
|
Page generated in 0.0647 seconds