• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Einfluss intermetallischer Phasen der Systeme Al-Cu und Al-Ag auf den Widerstand stromtragender Verbindungen im Temperaturbereich von 90 °C bis 200 °C

Pfeifer, Stephanie 27 October 2016 (has links) (PDF)
Im Netz der Elektroenergieversorgung werden einzelne Netzkomponenten und Betriebsmittel durch Verbindungen elektrisch zusammengeschaltet. Dabei werden häufig Schraubenverbindungen mit Stromschienen eingesetzt. Diese müssen über mehrere Jahrzehnte zuverlässig hohe Ströme tragen können. Abhängig von der sich einstellenden Temperatur an den Verbindungen altern diese mit der Zeit. Die Alterung wird je nach Verbindungssystem von verschiedenen Mechanismen beeinflusst, die alle parallel ablaufen. Bei ruhenden, stationären elektrotechnischen Verbindungen, deren Kontaktpartner aus verschiedenen Materialien bestehen, können abhängig von der Paarung intermetallische Phasen (IMP) entstehen. Die sich bildenden IMP haben schlechtere elektrische und mechanische Eigenschaften als die reinen Metalle. Daraus resultiert ein höherer Verbindungswiderstand. Die erzeugte Verlustleistung sowie die Temperatur der Verbindung steigen an. Dies kann zum Ausfall der Verbindung führen. In der Elektroenergietechnik werden aufgrund ihrer guten elektrischen Leitfähigkeit häufig die Werkstoffe Aluminium und Kupfer sowie das Beschichtungsmetall Silber bei Temperaturen von üblicherweise 90 °C bis 200 °C eingesetzt. Speziell bei Aluminium-Kupfer-Verbindungen, die nicht langzeitstabil sind, wird als maßgebliche Ausfallursache das Bilden von IMP gesehen. Die IMP des Systems Al-Cu wurden in der Vergangenheit bereits vielfach untersucht. Das Übertragen der Ergebnisse auf die Problematik stromtragender Verbindungen der Elektroenergietechnik ist jedoch nicht ohne Weiteres möglich. Der relevante niedrige Temperaturbereich zwischen 90 °C und 200 °C spielt bei vielen Untersuchungen nur eine untergeordnete Rolle. Zusätzlich können die Eigenschaften der IMP bei unterschiedlichen Herstellungsverfahren voneinander abweichen. Zum System Al-Ag ist in der Literatur nur wenig bekannt. Deshalb wurden für diese Arbeit phasenreine IMP der Systeme Al-Cu und Al-Ag mit unterschiedlichen Herstellungsverfahren bei möglichst identischen Randbedingungen hergestellt. Diese wurden mit einer speziell für diese Proben entwickelten Messeinrichtung elektrisch charakterisiert und der ermittelte spezifische elektrische Widerstand der IMP und ihr Temperaturbeiwert mit Werten aus der Literatur verglichen. An verschiedenen Schraubenverbindungen mit Stromschienen aus Aluminium und Kupfer wurden Langzeitversuche von bis zu 3 Jahren durchgeführt. Der Verbindungswiderstand wurde abhängig von der Zeit ermittelt. An ausgewählten Verbindungen wurde zusätzlich in zwei identischen Versuchen der Einfluss der Belastung mit Dauer- und Wechsellast auf das Langzeitverhalten untersucht. Mithilfe der an den IMP ermittelten elektrischen Eigenschaf-ten wurde deren Einfluss auf den Verbindungswiderstand berechnet. Die Ergebnisse dieser Modellrechnung wurden mit den Ergebnissen aus den Langzeitversuchen verglichen. Ausgewählte Verbindungen wurden dazu mikroskopisch untersucht. Es wurde festgestellt, dass die IMP nicht ausschließlich das Langzeitverhalten stromtragender Verbindungen bestimmen. Es muss mindestens ein weiterer Alterungsmechanismus einen signifikanten Einfluss haben. Die Untersuchungen deuten darauf hin, dass dabei Sauerstoff eine zentrale Rolle spielen könnte. / In electrical power supply networks a huge number of electrical joints are used to connect transmission lines, conductors, switchgears and other components. During operation these joints are aging due to different aging mechanisms. Depending on the type of the joint several aging mechanisms can take place at the same time. For stationary joints with contact partners made of different materials, the formation of intermetallic compounds (IMC) may be an issue. These IMC have worse electrical and mechanical properties compared to the pure metals. Therefore, the presence of IMC in the contact area results in a higher joint re-sistance and the temperature and the thermal power losses increase. Typical temperatures for high current joints are between 90 °C and 200 °C. Due to their good electrical conductivity aluminum and copper are often used as conductor materials and silver as a coating material. Especially bimetal joints made of aluminum and copper are not long term stable. The formation of Al-Cu IMC is held responsible as a cause of failure. The IMC of the System Al-Cu have already been studied by several authors. However, it is difficult to apply the results directly to electrical joints in power supply networks. In many studies the low temperature range between 90 °C and 200 °C is not regarded. In addition, the properties of the IMC may vary due to different preparation processes. There is only little information about the system Al-Ag in the literature. For this work, phase pure IMC of the systems Al-Cu and Al-Ag were prepared by different preparation processes using similar process parameters. These IMC samples were electrically characterized with a specially developed measuring device. The specific electric resistivity and the temperature coefficient of resistance were determined and compared to values taken from the literature. Various combinations of bus bar joints made of aluminum and copper were investigated in long term tests for up to three years. The joint resistance was determined as a function of time. In addition, for selected joints two identic setups were operated with continuous load and alternating load. The long term behavior was investigated with regard to the load ap-plied. Using the results of the electrical characterization of the IMC their influence on the joint resistance was calculated theoretically. The results of the calculation were compared to the results determined in the long term tests. Selected joints were examined microscopi-cally after termination of the long term tests. It was found, that the long term behavior of bimetal electrical joints with the combination Al-Cu and Al-Ag cannot be exclusively described by the growth of IMC. At least there is one further aging mechanism involved. The studies suggest, that oxygen may have a significant influence.
2

Einfluss intermetallischer Phasen der Systeme Al-Cu und Al-Ag auf den Widerstand stromtragender Verbindungen im Temperaturbereich von 90 °C bis 200 °C

Pfeifer, Stephanie 26 October 2015 (has links)
Im Netz der Elektroenergieversorgung werden einzelne Netzkomponenten und Betriebsmittel durch Verbindungen elektrisch zusammengeschaltet. Dabei werden häufig Schraubenverbindungen mit Stromschienen eingesetzt. Diese müssen über mehrere Jahrzehnte zuverlässig hohe Ströme tragen können. Abhängig von der sich einstellenden Temperatur an den Verbindungen altern diese mit der Zeit. Die Alterung wird je nach Verbindungssystem von verschiedenen Mechanismen beeinflusst, die alle parallel ablaufen. Bei ruhenden, stationären elektrotechnischen Verbindungen, deren Kontaktpartner aus verschiedenen Materialien bestehen, können abhängig von der Paarung intermetallische Phasen (IMP) entstehen. Die sich bildenden IMP haben schlechtere elektrische und mechanische Eigenschaften als die reinen Metalle. Daraus resultiert ein höherer Verbindungswiderstand. Die erzeugte Verlustleistung sowie die Temperatur der Verbindung steigen an. Dies kann zum Ausfall der Verbindung führen. In der Elektroenergietechnik werden aufgrund ihrer guten elektrischen Leitfähigkeit häufig die Werkstoffe Aluminium und Kupfer sowie das Beschichtungsmetall Silber bei Temperaturen von üblicherweise 90 °C bis 200 °C eingesetzt. Speziell bei Aluminium-Kupfer-Verbindungen, die nicht langzeitstabil sind, wird als maßgebliche Ausfallursache das Bilden von IMP gesehen. Die IMP des Systems Al-Cu wurden in der Vergangenheit bereits vielfach untersucht. Das Übertragen der Ergebnisse auf die Problematik stromtragender Verbindungen der Elektroenergietechnik ist jedoch nicht ohne Weiteres möglich. Der relevante niedrige Temperaturbereich zwischen 90 °C und 200 °C spielt bei vielen Untersuchungen nur eine untergeordnete Rolle. Zusätzlich können die Eigenschaften der IMP bei unterschiedlichen Herstellungsverfahren voneinander abweichen. Zum System Al-Ag ist in der Literatur nur wenig bekannt. Deshalb wurden für diese Arbeit phasenreine IMP der Systeme Al-Cu und Al-Ag mit unterschiedlichen Herstellungsverfahren bei möglichst identischen Randbedingungen hergestellt. Diese wurden mit einer speziell für diese Proben entwickelten Messeinrichtung elektrisch charakterisiert und der ermittelte spezifische elektrische Widerstand der IMP und ihr Temperaturbeiwert mit Werten aus der Literatur verglichen. An verschiedenen Schraubenverbindungen mit Stromschienen aus Aluminium und Kupfer wurden Langzeitversuche von bis zu 3 Jahren durchgeführt. Der Verbindungswiderstand wurde abhängig von der Zeit ermittelt. An ausgewählten Verbindungen wurde zusätzlich in zwei identischen Versuchen der Einfluss der Belastung mit Dauer- und Wechsellast auf das Langzeitverhalten untersucht. Mithilfe der an den IMP ermittelten elektrischen Eigenschaf-ten wurde deren Einfluss auf den Verbindungswiderstand berechnet. Die Ergebnisse dieser Modellrechnung wurden mit den Ergebnissen aus den Langzeitversuchen verglichen. Ausgewählte Verbindungen wurden dazu mikroskopisch untersucht. Es wurde festgestellt, dass die IMP nicht ausschließlich das Langzeitverhalten stromtragender Verbindungen bestimmen. Es muss mindestens ein weiterer Alterungsmechanismus einen signifikanten Einfluss haben. Die Untersuchungen deuten darauf hin, dass dabei Sauerstoff eine zentrale Rolle spielen könnte. / In electrical power supply networks a huge number of electrical joints are used to connect transmission lines, conductors, switchgears and other components. During operation these joints are aging due to different aging mechanisms. Depending on the type of the joint several aging mechanisms can take place at the same time. For stationary joints with contact partners made of different materials, the formation of intermetallic compounds (IMC) may be an issue. These IMC have worse electrical and mechanical properties compared to the pure metals. Therefore, the presence of IMC in the contact area results in a higher joint re-sistance and the temperature and the thermal power losses increase. Typical temperatures for high current joints are between 90 °C and 200 °C. Due to their good electrical conductivity aluminum and copper are often used as conductor materials and silver as a coating material. Especially bimetal joints made of aluminum and copper are not long term stable. The formation of Al-Cu IMC is held responsible as a cause of failure. The IMC of the System Al-Cu have already been studied by several authors. However, it is difficult to apply the results directly to electrical joints in power supply networks. In many studies the low temperature range between 90 °C and 200 °C is not regarded. In addition, the properties of the IMC may vary due to different preparation processes. There is only little information about the system Al-Ag in the literature. For this work, phase pure IMC of the systems Al-Cu and Al-Ag were prepared by different preparation processes using similar process parameters. These IMC samples were electrically characterized with a specially developed measuring device. The specific electric resistivity and the temperature coefficient of resistance were determined and compared to values taken from the literature. Various combinations of bus bar joints made of aluminum and copper were investigated in long term tests for up to three years. The joint resistance was determined as a function of time. In addition, for selected joints two identic setups were operated with continuous load and alternating load. The long term behavior was investigated with regard to the load ap-plied. Using the results of the electrical characterization of the IMC their influence on the joint resistance was calculated theoretically. The results of the calculation were compared to the results determined in the long term tests. Selected joints were examined microscopi-cally after termination of the long term tests. It was found, that the long term behavior of bimetal electrical joints with the combination Al-Cu and Al-Ag cannot be exclusively described by the growth of IMC. At least there is one further aging mechanism involved. The studies suggest, that oxygen may have a significant influence.
3

Identifikation und Quantifizierung korrelativer Zusammenhänge zwischen elektrischer sowie klimatischer Umgebung und Elektroenergiequalität / Systematic Analysis of Electrical and Climatic Environment and their Impact on Power Quality in Public LV Networks

Domagk, Max 25 October 2016 (has links) (PDF)
Eine angemessene Qualität der Elektroenergie ist Grundvoraussetzung für den störungsfreien Betrieb aller angeschlossenen Geräte und Anlagen und spielt in den Verteilungsnetzen moderner Industriegesellschaften wie Deutschland eine zentrale Rolle. Die Elektroenergiequalität (EEQ) wird in Strom- und Spannungsqualität unterteilt. Während die Stromqualität maßgeblich im Verantwortungsbereich der Hersteller von Geräten und Anlagen liegt, sind für die Sicherung einer angemessenen Spannungsqualität im Wesentlichen die Netzbetreiber verantwortlich. Durch die technische Weiterentwicklung bspw. neuer Gerätetechnologien und die zunehmende Integration dezentraler Erzeugungsanlagen wie Photovoltaikanlagen ist zu erwarten, dass die EEQ auch künftig weiter an Bedeutung gewinnt. Die EEQ im Niederspannungsverteilungsnetz ist abhängig von Ort und Zeit und wird durch verschiedene Qualitätskenngrößen beschrieben. Die örtliche und zeitliche Abhängigkeit resultieren aus einer Vielzahl verschiedener Einflussfaktoren, welche sich entweder der elektrischen oder der nicht-elektrischen Umgebung des betrachteten Verteilungsnetzes zuordnen lassen. Die elektrische Umgebung wird durch die Art und Anzahl angeschlossener Verbraucher bzw. Erzeuger (Abnehmer- bzw. Erzeugerstruktur) sowie Struktur und technische Parameter des Verteilungsnetzes (Netzstruktur) bestimmt. Die nicht-elektrische Umgebung umfasst u.a. Einflüsse der klimatischen Umgebung wie bspw. Temperatur oder Globalstrahlung. Ziel dieser Arbeit ist die systematische Identifikation korrelativer Zusammenhänge zwischen den genannten Umgebungseinflüssen und der EEQ sowie deren Quantifizierung auf Basis geeigneter Indizes und Kenngrößen. Die Ergebnisse der Arbeit helfen grundlegende Prinzipien der Ausprägung der Elektroenergiequalität im öffentlichen Verteilungsnetz besser zu verstehen sowie die Verteilungsnetze im Hinblick auf die Elektroenergiequalität zu charakterisieren und zu klassifizieren. Analog zu den Standard-Lastprofilen erfolgt die Definition von Standard-Qualitätsprofilen. / Power quality levels in public low voltage grids are influenced by many factors which can either be assigned to the electrical environment (connected consumers, connected genera-tion, network characteristics) or to the non-electrical environment (e.g. climatic conditions) at the measurement site. Type and amount of connected consumers (consumer topology) are expected to have a very high impact on power quality (PQ) levels. The generation topology is characterized by number and kind of equipment and generating installations like photovoltaic systems which are connected to the LV grid. The electrical parameters of the grid define the network topology. The parameters which are most suitable to describe each of the three topologies and the climatic environment will be identified. Voltage and current quality in public low voltage (LV) grids vary depending on location and time. They are quantified by a set of different parameters which either belong to events (e.g. dips) or to variations (e.g. harmonics). This thesis exclusively addresses continuous parameters describing variations. Continuous phenomena like harmonics are closely linked to an one-day-cycle which implies a more or less periodic behavior of the continuous power quality parameters. Consumer topologies such as office buildings or residential areas differ in their use of equipment. Time series analysis is used to distinguish between different consumer topologies and to identify characteristic weeks. The clustering of one-day time series is applied to identify characteristic days within the weeks of certain topologies. Based on the results, emission profiles for certain current quality parameters of different consumer topologies will be defined. Due to the characteristic harmonic current emission of certain consumer topologies which represents the typical user behaviour a classification system is developed. It is used to automatically classify the emission profiles of harmonic currents for unknown measurements and to estimate a likely consumer topology. A classification measure is introduced in order to identify unusual or false classified emission profiles. The usage behaviour of equipment by customers usually varies over the year. Subsequently, the levels of PQ parameters like harmonics may show seasonal variations which are identified by using newly defined parameters. The introduction of new device technologies on a large scale like the transition from incandescent to LED lamps might result in long-term changes to the levels of PQ parameters (e.g. harmonics). The analysis of the long-term behavior (trend) will be applied in order to quantify global trends (looking on the measurement duration as a whole) and local trends (looking on individual segments of the whole time series).
4

Identifikation und Quantifizierung korrelativer Zusammenhänge zwischen elektrischer sowie klimatischer Umgebung und Elektroenergiequalität

Domagk, Max 19 October 2015 (has links)
Eine angemessene Qualität der Elektroenergie ist Grundvoraussetzung für den störungsfreien Betrieb aller angeschlossenen Geräte und Anlagen und spielt in den Verteilungsnetzen moderner Industriegesellschaften wie Deutschland eine zentrale Rolle. Die Elektroenergiequalität (EEQ) wird in Strom- und Spannungsqualität unterteilt. Während die Stromqualität maßgeblich im Verantwortungsbereich der Hersteller von Geräten und Anlagen liegt, sind für die Sicherung einer angemessenen Spannungsqualität im Wesentlichen die Netzbetreiber verantwortlich. Durch die technische Weiterentwicklung bspw. neuer Gerätetechnologien und die zunehmende Integration dezentraler Erzeugungsanlagen wie Photovoltaikanlagen ist zu erwarten, dass die EEQ auch künftig weiter an Bedeutung gewinnt. Die EEQ im Niederspannungsverteilungsnetz ist abhängig von Ort und Zeit und wird durch verschiedene Qualitätskenngrößen beschrieben. Die örtliche und zeitliche Abhängigkeit resultieren aus einer Vielzahl verschiedener Einflussfaktoren, welche sich entweder der elektrischen oder der nicht-elektrischen Umgebung des betrachteten Verteilungsnetzes zuordnen lassen. Die elektrische Umgebung wird durch die Art und Anzahl angeschlossener Verbraucher bzw. Erzeuger (Abnehmer- bzw. Erzeugerstruktur) sowie Struktur und technische Parameter des Verteilungsnetzes (Netzstruktur) bestimmt. Die nicht-elektrische Umgebung umfasst u.a. Einflüsse der klimatischen Umgebung wie bspw. Temperatur oder Globalstrahlung. Ziel dieser Arbeit ist die systematische Identifikation korrelativer Zusammenhänge zwischen den genannten Umgebungseinflüssen und der EEQ sowie deren Quantifizierung auf Basis geeigneter Indizes und Kenngrößen. Die Ergebnisse der Arbeit helfen grundlegende Prinzipien der Ausprägung der Elektroenergiequalität im öffentlichen Verteilungsnetz besser zu verstehen sowie die Verteilungsnetze im Hinblick auf die Elektroenergiequalität zu charakterisieren und zu klassifizieren. Analog zu den Standard-Lastprofilen erfolgt die Definition von Standard-Qualitätsprofilen. / Power quality levels in public low voltage grids are influenced by many factors which can either be assigned to the electrical environment (connected consumers, connected genera-tion, network characteristics) or to the non-electrical environment (e.g. climatic conditions) at the measurement site. Type and amount of connected consumers (consumer topology) are expected to have a very high impact on power quality (PQ) levels. The generation topology is characterized by number and kind of equipment and generating installations like photovoltaic systems which are connected to the LV grid. The electrical parameters of the grid define the network topology. The parameters which are most suitable to describe each of the three topologies and the climatic environment will be identified. Voltage and current quality in public low voltage (LV) grids vary depending on location and time. They are quantified by a set of different parameters which either belong to events (e.g. dips) or to variations (e.g. harmonics). This thesis exclusively addresses continuous parameters describing variations. Continuous phenomena like harmonics are closely linked to an one-day-cycle which implies a more or less periodic behavior of the continuous power quality parameters. Consumer topologies such as office buildings or residential areas differ in their use of equipment. Time series analysis is used to distinguish between different consumer topologies and to identify characteristic weeks. The clustering of one-day time series is applied to identify characteristic days within the weeks of certain topologies. Based on the results, emission profiles for certain current quality parameters of different consumer topologies will be defined. Due to the characteristic harmonic current emission of certain consumer topologies which represents the typical user behaviour a classification system is developed. It is used to automatically classify the emission profiles of harmonic currents for unknown measurements and to estimate a likely consumer topology. A classification measure is introduced in order to identify unusual or false classified emission profiles. The usage behaviour of equipment by customers usually varies over the year. Subsequently, the levels of PQ parameters like harmonics may show seasonal variations which are identified by using newly defined parameters. The introduction of new device technologies on a large scale like the transition from incandescent to LED lamps might result in long-term changes to the levels of PQ parameters (e.g. harmonics). The analysis of the long-term behavior (trend) will be applied in order to quantify global trends (looking on the measurement duration as a whole) and local trends (looking on individual segments of the whole time series).

Page generated in 0.0736 seconds