• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 11
  • 10
  • 9
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 81
  • 81
  • 24
  • 14
  • 13
  • 13
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The application of elemental tags for biological analyte identification

Easter, Renee N. 23 September 2011 (has links)
No description available.
2

New Chelating Agents based on 8-Hydroxyquinoline

Billo, Edward Joseph 06 1900 (has links)
Several new potentially terdentate chelating agents based on the 8-hydroxyquinoline structure have been synthesized and characterized. Protonation constants of these ligands and formation constants of their chelates with selected metal-ions have been determined. Where possible, the chelates have been characterized by elemental analysis and other means. The results show that the ligand 2-(2'-thienyl)-8-hydroxyquinoline acts as a sterically hindering bidentate donor; the unusual relationship found between the formation constants of its bis-chelates (K1 < K2) has been explained on the basis of steric effects. The results of studies involving 4-amino-5-hydroxy-acridine and 4,5-dihydroxyacridine indicate that these ligands act as terdentate and bidentate donors, respectively. The failure of 4,5-dihydroxyacridine to act as a terdentate donor is explained in terms of chelate-ring strain. / Thesis / Doctor of Philosophy (PhD)
3

Elemental analysis of Marksville-style prehistoric ceramics from Mississippi and Alabama

Baca, Keith A 03 May 2008 (has links)
Distinctive Marksville-style pottery is characteristic of the Middle Woodland period (200 B.C. – A.D. 500) in the Lower Mississippi River Valley and adjacent regions. Marksville material is common in the Lower Mississippi Valley, and the scarcity of similar pottery in northeastern Mississippi and western Alabama has caused claims that Marksville pots were imported into those areas; however, they may have been locally made. To test these alternative possibilities, the elemental composition of some Marksville-style potsherds, other pottery, and clays from various archaeological sites spanning the above regions was characterized using laser ablation-inductively coupled plasma-mass spectrometry. The results show that the analyzed Marksville-style pottery shares similar elemental profiles with locally common wares and local clays in the sample, allowing the conclusion that all of these Marksville specimens were made in the regions where they were found.
4

Elemental Analysis of Biological Matrices by Laser Ablation High Resolution Inductively Coupled Plasma Mass Spectrometry (LA-HR-ICP-MS) and High Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS)

Castro, Waleska 03 November 2008 (has links)
The need for elemental analysis of biological matrices such as bone, teeth, and plant matter for sourcing purposes has emerged within the forensic and geochemical laboratories. Trace elemental analyses for the comparison of aterials such as glass by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS has been shown to offer a high degree of discrimination between different manufacturing sources. Unit resolution ICP-MS instruments may suffer from some polyatomic interferences including 40Ar16O+, 40Ar16O1H+, and 40Ca16O+ that affect iron measurement at trace levels. Iron is an important element in the analysis of glass and also of interest for the analysis of several biological matrices. A comparison of the nalytical performance of two different ICP-MS systems for iron analysis in glass for determining the method detection limits (MDLs), accuracy, and precision of the measurement is presented. Acid digestion and laser ablation methods are also compared. Iron polyatomic interferences were reduced or resolved by using dynamic reaction cell and high resolution ICP-MS. MDLs as low as 0.03 ìg g-1 and 0.14 ìg g-1 for laser ablation and solution based analyses respectively were achieved. The use of helium as a carrier gas demonstrated improvement in the detection limits of both iron isotopes (56Fe and 57Fe) in medium resolution for the HR-ICP-MS and with a dynamic reaction cell (DRC) coupled to a quadrupole ICP-MS system. The development and application of robust analytical methods for the quantification of trace elements in biological matrices has lead to a better understanding of the potential utility of these measurements in forensic chemical analyses. Standard reference materials (SRMs) were used in the development of an analytical method using HR-ICP-MS and LA-HR-ICP-MS that was subsequently applied on the analysis of real samples. Bone, teeth and ashed marijuana samples were analyzed with the developed method. Elemental analysis of bone samples from 12 different individuals provided discrimination between individuals, when femur and humerus bones were considered separately. Discrimination of 14 teeth samples based on elemental composition was achieved with the exception of one case where samples from the same individual were not associated with each other. The discrimination of 49 different ashed plant (cannabis)samples was achieved using the developed method.
5

Further Development of Atmospheric Pressure, Self-Igniting Microplasma Devices (MPDs) for Elemental Analysis of Liquid Microsamples Using Atomic Emission Spectrometry (AES)

Weagant, Scott Richard January 2011 (has links)
The present elemental analysis workhorse worldwide is Inductively Coupled Plasma (ICP) Atomic Emission Spectrometry (AES) and Mass Spectrometry (MS). Due to the high power requirements, large gas consumption and the more obvious attribute, size, the ICP is tethered to the lab. Usually, samples must be collected, bottled, sometimes stabilized by acids and then shipped back to the lab for analysis (hours to days to weeks turnover rate). Due to the demand for a portable analyzer this thesis will focus on further development of microplasma devices (MPDs) for portable on-site analysis, in (near) real-time. Mini-In-Torch Vapourization (mini-ITV) is the sample introduction method for MPDs which removes the need for sample preparation (further necessitates portability). Mini-ITV introduces the sample into the MPD via electrothermal vapourization of a dry (water-free) nano- to micro- volume sample. Pneumatic nebulization, the commercially available ICP sample introduction method would extinguish the microplasma. Microplasma stability is the first issue addressed by confining the microplasma to a quartz tube (“wall-stabilized”) in hopes of a more stable MPD background emission. Once stabilized MPD conditions were found key microplasma parameters were studied including MPD power, HVac frequency, operating mode, inter-electrode distance (IED) and observation location, in hopes of improved MPD analytical performance. Microplasma excitation mechanism and maximum energy available in the microplasma for analyte are discussed. Some fundamental characteristics such as excitation temperature (Texc) and changes in atom/ion population with variation in some of the key MPD parameters were also determined.
6

Further Development of Atmospheric Pressure, Self-Igniting Microplasma Devices (MPDs) for Elemental Analysis of Liquid Microsamples Using Atomic Emission Spectrometry (AES)

Weagant, Scott Richard January 2011 (has links)
The present elemental analysis workhorse worldwide is Inductively Coupled Plasma (ICP) Atomic Emission Spectrometry (AES) and Mass Spectrometry (MS). Due to the high power requirements, large gas consumption and the more obvious attribute, size, the ICP is tethered to the lab. Usually, samples must be collected, bottled, sometimes stabilized by acids and then shipped back to the lab for analysis (hours to days to weeks turnover rate). Due to the demand for a portable analyzer this thesis will focus on further development of microplasma devices (MPDs) for portable on-site analysis, in (near) real-time. Mini-In-Torch Vapourization (mini-ITV) is the sample introduction method for MPDs which removes the need for sample preparation (further necessitates portability). Mini-ITV introduces the sample into the MPD via electrothermal vapourization of a dry (water-free) nano- to micro- volume sample. Pneumatic nebulization, the commercially available ICP sample introduction method would extinguish the microplasma. Microplasma stability is the first issue addressed by confining the microplasma to a quartz tube (“wall-stabilized”) in hopes of a more stable MPD background emission. Once stabilized MPD conditions were found key microplasma parameters were studied including MPD power, HVac frequency, operating mode, inter-electrode distance (IED) and observation location, in hopes of improved MPD analytical performance. Microplasma excitation mechanism and maximum energy available in the microplasma for analyte are discussed. Some fundamental characteristics such as excitation temperature (Texc) and changes in atom/ion population with variation in some of the key MPD parameters were also determined.
7

The Discrimination and Association of Float Glass and The Quantitative Analysis of Liquids from Aerosols and Microdrops using Laser Induced Breakdown Spectroscopy

Cahoon, Erica M. 10 April 2012 (has links)
Glass is a common form of trace evidence found at many scenes of crimes in the form of small fragments. These glass fragments can transfer to surrounding objects and/or persons and may provide forensic investigators valuable information to link a suspect to the scene of a crime. Since the elemental composition of different glass sources can be very similar, a highly discriminating technique is required to distinguish between fragments that have originated from different sources. The research presented here demonstrates that Laser Induced Breakdown Spectroscopy (LIBS) is a viable analytical technique for the association and discrimination of glass fragments. The first part of this research describes the optimization of the LIBS experiments including the use of different laser wavelengths to investigate laser-material interaction. The use of a 266 nm excitation laser provided the best analytical figures of merit with minimal damage to the sample. The resulting analytical figures of merit are presented. The second part of this research evaluated the sensitivity of LIBS to associate or discriminate float glass samples originating from the same manufacturing plants and produced at approximately the same time period. Two different sample sets were analyzed ranging in manufacturing dates from days to years apart. Eighteen (18) atomic emission lines corresponding to the elements Sr, K, Fe, Ca, Al, Ba, Na, Mg and Ti, were chosen because of their detection above the method detection limits and for presenting differences between the samples. Ten elemental ratios producing the most discrimination were selected for each set. When all the ratios are combined in a comparison, 99% of the possible pairs were discriminated using the optimized LIBS method generating typical analytical precisions of ~5% RSD. The final study consisted of the development of a new approach for the use of LIBS as a quantitative analysis of ultra-low volume solution analysis using aerosols and microdrops. Laser induced breakdown spectroscopy demonstrated to be an effective technique for the analysis of as low as 90 pL for microdrop LIBS with 1 pg absolute LOD and 20 µL for aerosol LIBS with an absolute LOD of ~100 fg.
8

Geographic Provenancing of Unprocessed Cotton Using Elemental Analysis and Stable Isotope Ratios

Schenk, Emily R 01 January 2012 (has links)
Cotton is the most abundant natural fiber in the world. Many countries are involved in the growing, importation, exportation and production of this commodity. Paper documentation claiming geographic origin is the current method employed at U.S. ports for identifying cotton sources and enforcing tariffs. Because customs documentation can be easily falsified, it is necessary to develop a robust method for authenticating or refuting the source of the cotton commodities. This work presents, for the first time, a comprehensive approach to the chemical characterization of unprocessed cotton in order to provide an independent tool to establish geographic origin. Elemental and stable isotope ratio analysis of unprocessed cotton provides a means to increase the ability to distinguish cotton in addition to any physical and morphological examinations that could be, and are currently performed. Elemental analysis has been conducted using LA-ICP-MS, LA-ICP-OES and LIBS in order to offer a direct comparison of the analytical performance of each technique and determine the utility of each technique for this purpose. Multivariate predictive modeling approaches are used to determine the potential of elemental and stable isotopic information to aide in the geographic provenancing of unprocessed cotton of both domestic and foreign origin. These approaches assess the stability of the profiles to temporal and spatial variation to determine the feasibility of this application. This dissertation also evaluates plasma conditions and ablation processes so as to improve the quality of analytical measurements made using atomic emission spectroscopy techniques. These interactions, in LIBS particularly, are assessed to determine any potential simplification of the instrumental design and method development phases. This is accomplished through the analysis of several matrices representing different physical substrates to determine the potential of adopting universal LIBS parameters for 532 nm and 1064 nm LIBS for some important operating parameters. A novel approach to evaluate both ablation processes and plasma conditions using a single measurement was developed and utilized to determine the “useful ablation efficiency” for different materials. The work presented here demonstrates the potential for an a priori prediction of some probable laser parameters important in analytical LIBS measurement.
9

Focussed MeV-Ion Micro- and Nano-Beams in the Life Sciences / Fokussierte MeV-Ionen Mikro- und Nanostrahlen in den Lebenswissenschaften

Reinert, Tilo 18 February 2016 (has links) (PDF)
This work presents the development of a sub-micron nuclear microprobe for applications in the life sciences. It includes quantitative trace element analysis with sub-micron spatial resolution, 2D- and 3D-microscopy of density distributions and the targeted irradiation of living cells with counted single ions. The analytical methods base on particle induced X-ray emission spectrometry (PIXE), Rutherford backscattering spectrometry (RBS), scanning transmission ion microscopy (STIM) and STIM-tomography. The specific development of the existing nuclear microprobe LIPSION led to an improved performance of the capabilities for trace element analysis. For sub-micron analysis the spatial resolution could be improved to 300 nm at a sensitivity of about 1 µg/g for metal ions in biological matrices; for a resolution of 1 µm the sensitivity was improved to 200 ng/g (3 µmol/l). This habilitation thesis comprises a short general introduction including the motivation to utilize focussed high energy ion beams, an overview on the applications and actual research fields. The introduction is followed by the basic principles of the equipments and analytical methods. An estimation of the limits of resolution for element analytical and single ion techniques is given for the Leipzig system. Thereafter, selected studies from different research areas are presented. The first presented application is a study from environmental air pollution research. It is demonstrated that the microscopic elemental analysis of single aerosol particles can be used to assess the contributions from different sources. A further example is the analysis of the distribution of nanoparticles in skin cross-sections for a risk assessment of the applications of nanosized physical UV-filters in cosmetic products. The risk assessment is followed by the micro-analysis of trace elements, especially of bound metal ions, in brain sections on the cellular and sub-cellular level. After this the application of focussed MeV ion beams in low dose radiobiological research is presented. Finally, the analysis of 3D-density distributions by proton micro-tomography is demonstrated. A summary concludes on the applications and gives an outlook to further applications and methodological developments. The appendix comprises the relevant publications of the author. / Die vorliegende Arbeit etabliert für Anwendungen in den Lebenswissenschaften den Einsatz hochfokussierter MeV-Ionenstrahlen für nuklear-mikroskopische Methoden der quantitativen Spurenelementanalyse, der 2D- und 3D-Dichtemikroskopie sowie für die gezielte Bestrahlung einzelner lebender Zellen für radiobiologische Experimente. Zur Anwendung kamen die Methoden ortsaufgelöste Protonen induzierte Röntgenfluoreszenzanalyse (particle induced X-ray emission - PIXE), Spektrometrie rückgestreuter Ionen (Rutherford backscattering spectrometry - RBS) und Rastertransmissionsionenmikroskopie (scanning transmission ion microscopy - STIM). Durch eine gezielte Weiterentwicklung des bestehenden Ionenstrahlmikroskops, der Hochenergie Ionennanosonde LIPSION, konnte die Ortsauflösung für Spurenelementanalyse auf unter 300 nm verbessert werden, beziehungsweise die Sensitivität für Metallionen in biologischen Proben auf unter 200 ng/g (3 µmol/l) bei einer Ortsauflösung von 1 µm verbessert werden. Die Habilitationsschrift umfasst eine kurze allgemeine Einleitung einschließlich der Motivation für den Einsatz fokussierter MeV-Ionenstrahlen sowie einen Überblick über die Anwendungsgebiete und aktuellen Forschungsschwerpunkte. Danach werden kurz die Grundlagen der Technik und Methoden vorgestellt, gefolgt von einer Abschätzung der Auflösungsgrenzen für Elementanalysen und Einzelionentechniken. Danach werden ausgewählte Anwendungen aus verschiedenen Forschungsgebieten vorgestellt. Das erstes Beispiel ist aus der Umweltforschung. Es wird dargestellt, wie mittels ortsaufgelöster Elementspektroskopie eine Abschätzung der Feinstaubbelastung nach Beiträgen einzelner Verursacherquellen erfolgen kann. Dann folgt als Beispiel eine ortsaufgelöste Analyse der Verteilung von Nanopartikeln aus Sonnencremes in Hautquerschnitten zur Risikoabschätzung der Anwendungen von Nanotechnologie in kosmetischen Produkten. Desweiteren werden Studien der Spurenelementverteilung, speziell der von gebundenen Metallionen, in Hirnschnitten auf zellulärer und subzellulärer Ebene erläutert. Das anschließende Beispiel erläutert die Anwendung niedriger Energiedosen in der Radiobiologie anhand des Beschusses einzelner lebender Zellen mit abgezählten einzelnen Ionen. Als letztes Beispiel wird die Anwendung hochfokussierter Ionenstrahlen für die Mikrotomographie gezeigt. Abschließend folgt eine zusammenfassende Bewertung der vorgestellten Anwendungen mit einem Ausblick auf weitere Anwendungen und methodische Entwicklungen. Der Arbeit sind die relevanten Veröffentlichungen mit Beteiligung des Autors als Anhang beigefügt.
10

ASSESSING THE ENVIRONMENTAL AND BIOLOGICAL IMPLICATIONS OF VARIOUS ELEMENTS THROUGH ELEMENTAL SPECIATION USING INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY

GRANT, TYRE D. 07 October 2004 (has links)
No description available.

Page generated in 0.1232 seconds