• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • Tagged with
  • 11
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fabrication of Fluorescent Nanoprobes and Their Applications in Nanophotonics

Jia, Yaoshun 29 March 2010 (has links)
In recent years, nanoprobe-based devices have attracted significant attention and found a wide range of applications, including nanostructure imaging, single molecular detection, and physical, chemical, and biological sensing applications. However, since the scale of nanodevices is substantially less than the optical diffraction limit, their fabrication remains a difficult challenge. Despite significant efforts, most of the fabrication techniques developed so far require expensive equipment and complicated processing procedures, which has hindered their applications. In this thesis, we developed a new class of fluorescent nanoprobes consist of a silica fiber taper, a single carbon nanotube, and nanoscale fluorescent elements (such as semiconductor quantum dots). This nanoprobe provides a natural interface between the nanoscale structures (i.e., the fluorescent elements) and the microscale structure (i.e., the fiber taper), which can significantly simplify their fabrication. Furthermore, since the nanoscale fluorescent elements are produced through bottom-up processes such as chemical synthesis, we can easily tailor the functionalities of such fluorescent nanoprobes to many different applications in nanophotonics, including near field imaging, nonlinear optics mapping, and quantum electrodynamics. We have custom designed an optical system for this nanoprobe fabrication. We have characterized the nanoprobes using transmission electron microscope (TEM) and scanning electron microscope (SEM) and performed preliminary experiments on near field scanning. Our current fabrication/imaging systems can be readily upgraded to achieve more advanced applications in nonlinear optics and quantum optics. / Master of Science
2

Focussed MeV-Ion Micro- and Nano-Beams in the Life Sciences / Fokussierte MeV-Ionen Mikro- und Nanostrahlen in den Lebenswissenschaften

Reinert, Tilo 18 February 2016 (has links) (PDF)
This work presents the development of a sub-micron nuclear microprobe for applications in the life sciences. It includes quantitative trace element analysis with sub-micron spatial resolution, 2D- and 3D-microscopy of density distributions and the targeted irradiation of living cells with counted single ions. The analytical methods base on particle induced X-ray emission spectrometry (PIXE), Rutherford backscattering spectrometry (RBS), scanning transmission ion microscopy (STIM) and STIM-tomography. The specific development of the existing nuclear microprobe LIPSION led to an improved performance of the capabilities for trace element analysis. For sub-micron analysis the spatial resolution could be improved to 300 nm at a sensitivity of about 1 µg/g for metal ions in biological matrices; for a resolution of 1 µm the sensitivity was improved to 200 ng/g (3 µmol/l). This habilitation thesis comprises a short general introduction including the motivation to utilize focussed high energy ion beams, an overview on the applications and actual research fields. The introduction is followed by the basic principles of the equipments and analytical methods. An estimation of the limits of resolution for element analytical and single ion techniques is given for the Leipzig system. Thereafter, selected studies from different research areas are presented. The first presented application is a study from environmental air pollution research. It is demonstrated that the microscopic elemental analysis of single aerosol particles can be used to assess the contributions from different sources. A further example is the analysis of the distribution of nanoparticles in skin cross-sections for a risk assessment of the applications of nanosized physical UV-filters in cosmetic products. The risk assessment is followed by the micro-analysis of trace elements, especially of bound metal ions, in brain sections on the cellular and sub-cellular level. After this the application of focussed MeV ion beams in low dose radiobiological research is presented. Finally, the analysis of 3D-density distributions by proton micro-tomography is demonstrated. A summary concludes on the applications and gives an outlook to further applications and methodological developments. The appendix comprises the relevant publications of the author. / Die vorliegende Arbeit etabliert für Anwendungen in den Lebenswissenschaften den Einsatz hochfokussierter MeV-Ionenstrahlen für nuklear-mikroskopische Methoden der quantitativen Spurenelementanalyse, der 2D- und 3D-Dichtemikroskopie sowie für die gezielte Bestrahlung einzelner lebender Zellen für radiobiologische Experimente. Zur Anwendung kamen die Methoden ortsaufgelöste Protonen induzierte Röntgenfluoreszenzanalyse (particle induced X-ray emission - PIXE), Spektrometrie rückgestreuter Ionen (Rutherford backscattering spectrometry - RBS) und Rastertransmissionsionenmikroskopie (scanning transmission ion microscopy - STIM). Durch eine gezielte Weiterentwicklung des bestehenden Ionenstrahlmikroskops, der Hochenergie Ionennanosonde LIPSION, konnte die Ortsauflösung für Spurenelementanalyse auf unter 300 nm verbessert werden, beziehungsweise die Sensitivität für Metallionen in biologischen Proben auf unter 200 ng/g (3 µmol/l) bei einer Ortsauflösung von 1 µm verbessert werden. Die Habilitationsschrift umfasst eine kurze allgemeine Einleitung einschließlich der Motivation für den Einsatz fokussierter MeV-Ionenstrahlen sowie einen Überblick über die Anwendungsgebiete und aktuellen Forschungsschwerpunkte. Danach werden kurz die Grundlagen der Technik und Methoden vorgestellt, gefolgt von einer Abschätzung der Auflösungsgrenzen für Elementanalysen und Einzelionentechniken. Danach werden ausgewählte Anwendungen aus verschiedenen Forschungsgebieten vorgestellt. Das erstes Beispiel ist aus der Umweltforschung. Es wird dargestellt, wie mittels ortsaufgelöster Elementspektroskopie eine Abschätzung der Feinstaubbelastung nach Beiträgen einzelner Verursacherquellen erfolgen kann. Dann folgt als Beispiel eine ortsaufgelöste Analyse der Verteilung von Nanopartikeln aus Sonnencremes in Hautquerschnitten zur Risikoabschätzung der Anwendungen von Nanotechnologie in kosmetischen Produkten. Desweiteren werden Studien der Spurenelementverteilung, speziell der von gebundenen Metallionen, in Hirnschnitten auf zellulärer und subzellulärer Ebene erläutert. Das anschließende Beispiel erläutert die Anwendung niedriger Energiedosen in der Radiobiologie anhand des Beschusses einzelner lebender Zellen mit abgezählten einzelnen Ionen. Als letztes Beispiel wird die Anwendung hochfokussierter Ionenstrahlen für die Mikrotomographie gezeigt. Abschließend folgt eine zusammenfassende Bewertung der vorgestellten Anwendungen mit einem Ausblick auf weitere Anwendungen und methodische Entwicklungen. Der Arbeit sind die relevanten Veröffentlichungen mit Beteiligung des Autors als Anhang beigefügt.
3

INVESTIGATION OF A METHOD FOR INTEGRATION OF OPTICAL NANOPROBES WITH CMOS PHOTODETECTION CIRCUITRY

YE, KUNTAO 03 October 2006 (has links)
No description available.
4

Development of Plasmonics-active Nanoconstructs for Targeting, Tracking, and Delivery in Single Cells

Gregas, Molly K. January 2010 (has links)
<p>Although various proof-of-concept studies have demonstrated the eventual potential of a multifunctional SERS-active metallic nanostructures for biological applications such as single cell analysis/measurement and drug delivery, the actual development and testing of such a system in vitro has remained challenging. One key point at which many potentially useful biomethods encounter difficulty lies in the translation of early proof-of-concept experiments in a clean, aqueous solution to complex, crowded, biologically-active environments such as the interior of living cells. The research hypotheses for this work state that multifunctional nanoconstructs can be fabricated and used effectively in conjunction with surface-enhanced Raman scattering (SERS) spectroscopy and other photonics-based methods to make intracellular measurements in and deliver treatment to single cells. The results of experimental work address the specific research aims, to 1) establish temporal and spatial parameters of nanoprobe uptake and modulation, 2) demonstrate targeting of functionalized nanoparticles to the cytoplasm and nucleus of single cells, 3) deliver to and activate drug treatment in cells using a multifunctional nanosystem, and 4) make intracellular measurements in normal and disease cells using external nanoprobes,</p><p>Raman spectroscopy and two-dimensional Raman imaging were used to identify and locate labeled silver nanoparticles in single cells using SERS detection. To study the efficiency of cellular uptake, silver nanoparticles were functionalized with three differently charged SERS/Raman labels and co-incubated with J774 mouse macrophage cell cultures for internalization via normal cellular processes. The surface charge on the nanoparticles was observed to modulate uptake efficiency, demonstrating a dual function of the surface modifications as tracking labels and as modulators of cell uptake. </p><p>To demonstrate delivery of functionalized nanoparticles to specific locations within the cell, silver nanoparticles were co-functionalized with the HIV-1 TAT (49-57) peptide for cell-penetrating and nuclear-targeting ability and p-mercaptobenzoic acid (pMBA) molecules as a surface-enhanced Raman scattering (SERS) label for tracking and imaging. Two-dimensional SERS mapping was used to track the spatial and temporal progress of nanoparticle uptake in PC-3 human prostate cells and to characterize localization at various time points, demonstrating the potential for an intracellularly-targeted multiplexed nanosystem. Silver nanoparticles co-functionalized with the TAT peptide showed greatly enhanced cellular uptake and nuclear localization as compared with the control nanoparticles lacking the targeting moiety. </p><p>The efficacy of targeted nanoparticles as a drug delivery vehicle was demonstrated with development and testing of an anti-cancer treatment in which novel scintillating nanoparticles functionalized with HIV-1 TAT (49-57) for cell-penetrating and nuclear-targeting ability were loaded with tethered psoralen molecules as cargo. The experiments were designed to investigate a nanodrug system consisting of psoralen tethered to a nuclear targeting peptide anchored to UVA-emitting, X-ray luminescent yttrium oxide nanoparticles. Absorption of the emitted UVA photons by nanoparticle-tethered psoralen has the potential to cross-link adenine and thymine residues in DNA located in the nucleus. Such cross-linking by free psoralen following activation with UVA light has previously been shown to cause apoptosis in vitro and an immunogenic response in vivo. Experimental results using the PC-3 human prostate cancer cell line demonstrate that X-ray excitation of these psoralen-functionalized Y2O3 nanoscintillators yields concentration-dependent reductions in cell number density when compared to control cultures containing psoralen-free Y2O3 nanoscintillators. </p><p>The development and demonstration of a small molecule-sensitive SERS-active fiber-optic nanoprobe suitable for intracellular bioanalysis was demonstrated using pH measurements in single living human cells. The proof-of-concept for the SERS-based fiber-optic nanoprobes was illustrated by measurements of intracellular pH in MCF-7 human breast cancer, HMEC-15/hTERT immortalized normal human mammary epithelial, and PC-3 human prostate cancer cells. Clinical relevance was demonstrated by pH measurements in patient biopsy cell samples. The results indicated that that fiber-optic nanoprobe insertion and interrogation provide a sensitive and selective means to monitor biologically relevant small molecules at the single cell level.</p> / Dissertation
5

Focussed MeV-Ion Micro- and Nano-Beams in the Life Sciences: Selected Applications

Reinert, Tilo 15 December 2008 (has links)
This work presents the development of a sub-micron nuclear microprobe for applications in the life sciences. It includes quantitative trace element analysis with sub-micron spatial resolution, 2D- and 3D-microscopy of density distributions and the targeted irradiation of living cells with counted single ions. The analytical methods base on particle induced X-ray emission spectrometry (PIXE), Rutherford backscattering spectrometry (RBS), scanning transmission ion microscopy (STIM) and STIM-tomography. The specific development of the existing nuclear microprobe LIPSION led to an improved performance of the capabilities for trace element analysis. For sub-micron analysis the spatial resolution could be improved to 300 nm at a sensitivity of about 1 µg/g for metal ions in biological matrices; for a resolution of 1 µm the sensitivity was improved to 200 ng/g (3 µmol/l). This habilitation thesis comprises a short general introduction including the motivation to utilize focussed high energy ion beams, an overview on the applications and actual research fields. The introduction is followed by the basic principles of the equipments and analytical methods. An estimation of the limits of resolution for element analytical and single ion techniques is given for the Leipzig system. Thereafter, selected studies from different research areas are presented. The first presented application is a study from environmental air pollution research. It is demonstrated that the microscopic elemental analysis of single aerosol particles can be used to assess the contributions from different sources. A further example is the analysis of the distribution of nanoparticles in skin cross-sections for a risk assessment of the applications of nanosized physical UV-filters in cosmetic products. The risk assessment is followed by the micro-analysis of trace elements, especially of bound metal ions, in brain sections on the cellular and sub-cellular level. After this the application of focussed MeV ion beams in low dose radiobiological research is presented. Finally, the analysis of 3D-density distributions by proton micro-tomography is demonstrated. A summary concludes on the applications and gives an outlook to further applications and methodological developments. The appendix comprises the relevant publications of the author. / Die vorliegende Arbeit etabliert für Anwendungen in den Lebenswissenschaften den Einsatz hochfokussierter MeV-Ionenstrahlen für nuklear-mikroskopische Methoden der quantitativen Spurenelementanalyse, der 2D- und 3D-Dichtemikroskopie sowie für die gezielte Bestrahlung einzelner lebender Zellen für radiobiologische Experimente. Zur Anwendung kamen die Methoden ortsaufgelöste Protonen induzierte Röntgenfluoreszenzanalyse (particle induced X-ray emission - PIXE), Spektrometrie rückgestreuter Ionen (Rutherford backscattering spectrometry - RBS) und Rastertransmissionsionenmikroskopie (scanning transmission ion microscopy - STIM). Durch eine gezielte Weiterentwicklung des bestehenden Ionenstrahlmikroskops, der Hochenergie Ionennanosonde LIPSION, konnte die Ortsauflösung für Spurenelementanalyse auf unter 300 nm verbessert werden, beziehungsweise die Sensitivität für Metallionen in biologischen Proben auf unter 200 ng/g (3 µmol/l) bei einer Ortsauflösung von 1 µm verbessert werden. Die Habilitationsschrift umfasst eine kurze allgemeine Einleitung einschließlich der Motivation für den Einsatz fokussierter MeV-Ionenstrahlen sowie einen Überblick über die Anwendungsgebiete und aktuellen Forschungsschwerpunkte. Danach werden kurz die Grundlagen der Technik und Methoden vorgestellt, gefolgt von einer Abschätzung der Auflösungsgrenzen für Elementanalysen und Einzelionentechniken. Danach werden ausgewählte Anwendungen aus verschiedenen Forschungsgebieten vorgestellt. Das erstes Beispiel ist aus der Umweltforschung. Es wird dargestellt, wie mittels ortsaufgelöster Elementspektroskopie eine Abschätzung der Feinstaubbelastung nach Beiträgen einzelner Verursacherquellen erfolgen kann. Dann folgt als Beispiel eine ortsaufgelöste Analyse der Verteilung von Nanopartikeln aus Sonnencremes in Hautquerschnitten zur Risikoabschätzung der Anwendungen von Nanotechnologie in kosmetischen Produkten. Desweiteren werden Studien der Spurenelementverteilung, speziell der von gebundenen Metallionen, in Hirnschnitten auf zellulärer und subzellulärer Ebene erläutert. Das anschließende Beispiel erläutert die Anwendung niedriger Energiedosen in der Radiobiologie anhand des Beschusses einzelner lebender Zellen mit abgezählten einzelnen Ionen. Als letztes Beispiel wird die Anwendung hochfokussierter Ionenstrahlen für die Mikrotomographie gezeigt. Abschließend folgt eine zusammenfassende Bewertung der vorgestellten Anwendungen mit einem Ausblick auf weitere Anwendungen und methodische Entwicklungen. Der Arbeit sind die relevanten Veröffentlichungen mit Beteiligung des Autors als Anhang beigefügt.
6

Développement de nano-systèmes hybrides à base d'apatites biomimétiques en vue d'applications biomédicales en cancérologie / Development of hybrid nano-systems based on biomimetic apatites dedicated to biomedical applications in cancerology

Al-Kattan, Ahmed 05 November 2010 (has links)
Ce travail porte sur l’élaboration et la caractérisation physico-chimique de nanoparticules hybrides à base d’apatites phosphocalciques biomimétiques proches du minéral osseux, en vue d’applications dans le domaine du diagnostic de cancers voire de thérapeutique. Dans cette étude, une formulation colloïdale a été développée en milieu aqueux à partir de sels aisément manipulables et en présence d’un dérivé phospholipidique (2-aminoéthylphosphate, AEP) jouant le rôle d’agent dispersant et permettant de contrôler la taille moyenne des nanoparticules (dans la gamme 30-100 nm). L’effet de paramètres expérimentaux majeurs (pH, concentrations, température) a été déterminé. La complémentarité des données analytiques (analyses chimiques, spectroscopie FTIR, diffraction des rayons X, diffusion de la lumière, MET, mesures de potentiel zêta) nous a permis de proposer un modèle descriptif des nanoparticules colloïdales mettant en jeu la présence de complexes entre Ca2+ et AEP- en surface de nanocristaux d’apatite. La possibilité de conférer des propriétés de luminescence a été démontrée, par substitution d’ions Ca2+ par des ions europium Eu3+, et une durée de vie de luminescence de l’ordre de la milliseconde permet d’envisager l’étude de matériel biologique. Plus ponctuellement, l’adsorption additionnelle d’acide folique a été étudiée, avec pour objectif final le ciblage de cellules cancéreuses. Divers aspects liés à une potentielle utilisation dans le domaine biomédical ont également été abordés, tels que la purification de telles suspensions par dialyse, la possibilité d’une remise en suspension après lyophilisation, l’évaluation de leur cytotoxicité, l’étude de leur potentiel proinflammatoire par interaction avec des macrophages humains, et une étude préliminaire de l’internalisation de ces nanoparticules par des cellules cancéreuses. Ce travail a permis de développer une « preuve de concept » permettant d’envisager l’utilisation future de tels nano-systèmes colloïdaux dans le domaine biomédical, et en particulier en oncologie. / This work deals with the synthesis and physico-chemical characterization of hybrid nanoparticles based on biomimetic calcium phosphate apatites close to bone mineral, in view of applications in the field of cancer diagnosis, or therapeutics. In this study, a colloidal formulation has been developed in aqueous medium, from easily-handled salts and in the presence of a phospholipid moiety (2-aminoethylphosphate, AEP) acting as dispersing agent and allowing the control of the mean nanoparticle size (in the range 30-100 nm). The effect of major experimental parameters (pH, concentrations, temperature) has been determined. Complementary analytical data (chemical analyses, FTIR spectroscopy, XRD, dynamic light scattering, TEM, zeta potential measurements) enabled us to propose a descriptive model for the colloidal nanoparticles, involving the presence of complexes between Ca2+ and AEP- on the surface of apatite nanocrystals. The possibility to confer luminescence properties was demonstrated by way of ionic substitutions of some Ca2+ ions by europium Eu3+ ions, allowed us to envision the study of biological material. The additional adsorption of folic acid was also addressed, with the final aim to target cancer cell. Other aspects linked to a potential future use of these nano-systems in the biomedical field were also examined, such as the purification of these suspensions by dialysis, the possibility to resuspend the nanoparticles after freeze-drying, the evaluation of their cytotoxicity, the study of the pro-inflammatory potential by following interactions with human macrophages, and a preliminary study of their internalization by cancer cells. This work enabled us to develop a « proof of concept » allowing one to envision the future use of such colloidal nano-systems in the biomedical field, and in particular in oncology.
7

Synthèse et caractérisation physico-chimique et optique de nanocristaux fluorescents pour les applications biomédicales. / Synthesis, physico-chemical and optical characterisation of fluorescent nanocrystals for biomedical applications.

Linkov, Pavel 19 December 2018 (has links)
Le développement des nanoparticules fluorescentes, appelées quantum dots (QDs) est devenu l'un des domaines les plus prometteurs de la science des matériaux. Dans cette étude une procédure de synthèse de QDs a été mise au point, comprenant la synthèse de noyaux ultra-minces de CdSe, la purification de noyau haute performance, le revêtement central avec une coquille épitaxiale en ZnS. Cette approche a permis d’obtenir des QDs d’une taille de 3,7 nm possédant un rendement quantique supérieur à 70%. Les QDs développés ont été utilisés pour concevoir des conjugués de QDs compacts avec les nouveaux dérivés d'acridine, ayant une affinité élevée pour le G-quadruplex des télomères, ainsi que leur effet inhibiteur sur la télomérase, une cible importante du traitement du cancer. Les résultats de cette étude ouvrent la voie à l'ingénierie de nanosondes multifonctionnelles possédant une meilleure pénétration intracellulaire, une plus forte brillance et une stabilité colloïdale plus importante. / Development of the fluorescent nanoparticles referred to as quantum dots (QDs) has become one of the most promising areas of materials sciences. In this study, a procedure of synthesis of QDs, which includes the synthesis of ultrasmall CdSe cores, high-performance purification, core coating with an epitaxial ZnS shell has been developed. This approach has allowed obtaining 3.7-nm QDs with a quantum yield exceeding 70%. The QDs have been used: to engineer compact conjugates of QDs with the novel acridine derivatives, which have a high affinity for the telomere G-quadruplex; to demonstrate their inhibitory effect on telomerase, an important target of anticancer therapy; and to accelerate transmembrane penetration of ultrasmall QDs into cancer cells while retaining a high brightness and colloidal stability. The results of this study pave the way to the engineering of multifunctional nanoprobes with improved intracellular penetration, brightness, and colloidal stability.
8

Analyse chimique quantitative à haute résolution spatiale par microsonde et nanosonde nucléaires

Devès, Guillaume 08 November 2010 (has links)
Etudier le rôle des éléments traces à l’échelle cellulaire requiert des outils analytiques de pointe. Nous avons développé une nouvelle méthodologie précise de la répartition des éléments chimiques cellulaires à partir d’une combinaison des méthodes d’analyse par faisceaux d’ions PIXE, RBS et STIM. Cette méthodologie s’appuie fortement sur le développement d’un logiciel (Paparamborde) pour le traitement quantitatif des expériences STIM. La validité de cette méthode ainsi que ses limites sont discutées. La méthode STIM-PIXE-RBS permet de quantifier la composition en éléments traces (µg/g) avec une incertitude de mesure évaluée à 19,8% dans des compartiments cellulaires de masse inférieure à 0,1 ng.Une des limites de la méthode réside dans le faible nombre d’échantillons analysables en raison à la fois du temps minimum nécessaire pour réaliser une acquisition et de l’accès limité aux plateformes d’analyse par faisceaux d’ions. C’est pourquoi nous avons également développé une base de données pour la capitalisation des compositions chimiques cellulaires (BDC4). Cette base de données s’inscrit dans la logique de l’utilisation de la composition chimique cellulaire comme un traceur de l’activité biologique, et doit permettre à terme de définir des compositions chimiques de référence pour les différents types cellulaires analysés.L’application de la méthodologie STIM-PIXE-RBS à l’étude de la toxicologie nucléaire du cobalt permet d’illustrer son intérêt en pratique. En particulier, l’analyse STIM s’avère indispensable dans le cas d’échantillons présentant une perte de masse organique au cours de l’analyse PIXE-RBS. / The study of the role of trace elements at cellular level requires the use of state-of-the-art analytical tools that could achieve enough sensitivity and spatial resolution. We developed a new methodology for the accurate quantification of chemical element distribution in single cells based on a combination of ion beam analysis techniques STIM, PIXE and RBS. The quantification procedure relies on the development of a STIM data analysis software (Paparamborde). Validity of this methodology and limits are discussed here. The method allows the quantification of trace elements (µg/g) with a 19.8 % uncertainty in cellular compartments with mass below 0.1 ng.The main limit of the method lies in the poor number of samples that can be analyzed, due to long irradiation times required and limited access to ion beam analysis facilities. This is the reason why we developed a database for cellular chemical composition capitalization (BDC4). BDC4 has been designed in order to use cellular chemical composition as a tracer for biological activities and is expected to provide in the future reference chemical compositions for any cellular type or compartment.Application of the STIM-PIXE-RBS methodology to the study of nuclear toxicology of cobalt compounds is presented here showing that STIM analysis is absolutely needed when organic mass loss appears during PIXE-RBS irradiation.
9

Nanosondes fluorescentes pour l'exploration des pressions et des températures dans les films lubrifiants / Fluorescent nanoprobes for the exploration of pressures and temperatures in movies lubricants

Hajjaji, Hamza 14 October 2014 (has links)
L’objectif de ce travail est d’utiliser les nanoparticules (NPs) de nanosondes fluorescentes de température en particulier dans les films lubrifiants. Le développement de ces nanosondes nécessite la détermination de leurs sensibilités thermiques afin de pouvoir sélectionner les NPs les plus prometteuses. Pour atteindre cet objectif, nous avons présenté deux méthodes d’élaboration utilisées pour la synthèse des nanostructures à base de SiC-3C, la méthode d’anodisation électrochimique et la méthode d’attaque chimique. Dans le premier cas, les analyses FTIR,RAMAN et MET des NPs finales ont montré que la nature chimique de ces NPs est majoritairement formée de carbone graphitique. L’étude détaillée de la photoluminescence de ces NPs a montré que le processus d’émission dépend de la chimie de surface des NPs, du milieu de dispersion et de sa viscosité, de la concentration des suspensions et de la température du milieu. Pour la deuxième famille de NP de SiC, les analyses cohérentes MET, DLS et PL ont montrées une taille moyenne de 1.8 nm de diamètre avec une dispersion de ±0.5nm. Le rendement quantique externe de ces NPs est de l’ordre de 4%. Les NPs dispersées dans l’éthanol, n’ont pas montré une dépendance à la température exploitable pour notre application. Par contre, les NPs de SiC produites par cette voie, étant donné la distribution en taille resserrée et le rendement quantique « honorable » pour un matériau à gap indirect, sont prometteuses pour des applications comme luminophores en particulier pour la biologie grâce à la non toxicité du SiC. Dans le cas des NPs de Si, nous avons également étudié deux types différents de NPs. Il s’agit de : (i) NPs obtenues par anodisation électrochimique et fonctionnalisées par des groupements alkyls (décène, 1-octadécène). Nous avons mis en évidence pour la première fois une très importante variation de l’énergie d’émission dEg/dT avec la température de type red-shift entre 300 et 400K. Les mesures de(T) conduisent à une sensibilité thermique de 0.75%/°C tout à fait intéressante par rapport aux NPs II-VI. De plus il a été montré que la durée de vie mesurée n’est pas fonction de la concentration. (ii) NPs obtenue par voie humide et fonctionnalisées par le n-butyl. Pour ce type de NPs nous avons mis pour la première fois en évidence un comportement de type blue-shift pour dEg/dT de l’ordre de -0.75 meV/K dans le squalane. Pour ces NPs, la sensibilité thermique pour la durée de vie de 0.2%°C est inférieure à celle des NPs de type (i) mais largement supérieure à celle des NPs de CdSe de 4 nm (0.08%/°C). La quantification de cette la sensibilité à la température par la position du pic d’émission dEg/dT et de la durée de vie nous permet d’envisager la conception de nanosondes de température basée sur les NPs de Si avec comme recommandations l’utilisation de NPs obtenues par anodisation électrochimique et de la durée de vie comme indicateur des variations en température. / The goal of this study is the use of Si and SiC nanoparticles (NPs) as fluorescent temperature nanoprobes particularly in lubricating films. The development of these nanoprobes requires the determination of their thermal sensitivity in order to select the best prospects NPs. To achieve this goal, we presented two preparation methods used for the synthesis of 3C-SiC based nanostructures : (i) anodic etching method and (ii) chemical etching method. In the first case, the FTIR, Raman and TEM analysis of final NPs showed that the chemical nature of these NPs is formed predominantly of graphitic carbon. The detailed photoluminescence study of these NPs showed that the emission process depends on the surface chemistry of the NPs, the dispersion medium and its viscosity, the suspension concentration and temperature of the environment.. In the second case, coherent TEM, DLS and PL analyzes showed an average size of 1.8 nm in diameter with a dispersion of ±0.5 nm. The external quantum efficiency of these NPs is 4%. NPs dispersed in ethanol, did not show an exploitable fluorescence dependence on temperature for our application. On the other hand, 3C-SiC NPs produced by this way, given the narrow size distribution and the reasonably high quantum yield for an indirect bandgap material, are promising for applications such as luminophores in particular in the biology field thanks to nontoxicity of SiC. In the case of Si we studied also two different types of NPs. (i) NPs obtained by anodic etching and functionalized by alkyl groups (decene, octadecene). We have demonstrated for the first time an important red-shift in the emission energy dEg/dT with temperature from 300 to 400K. The PL lifetime measurement(T) lead to a thermal sensitivity of 0.75% /°C very interesting compared to II-VI NPs. Furthermore it has been shown that t is not depending on the concentration. (ii) NPs obtained by wet-chemical process and functionalized with n-butyl. For this type of NPs we have identified for the first time a blue-shift behavior of dEg dT in the order of -0.75 meV/K in squalane. The thermal sensitivity for the PL lifetime of these NPs is 0.2%/°C, which is lower than that of NPs obtained by anodic etching method, but much greater than that of CdSe NPs with 4 nm of diameter (0.08%/°C). Quantification of the temperature sensitivity by the position of emission peak dEg/dT and the PL lifetime dτ/dT allows us to consider the realization of temperature nanoprobes based on Si NPs with recommendations to use Si NPs obtained by anodic etching method and PL lifetime as an indicator of temperature changes.
10

Hard X-Ray Scanning Microscope Using Nanofocusing Parabolic Refractive Lenses / Rastersondenmikroskopie mit harter Röntgenstrahlung

Patommel, Jens 08 March 2011 (has links) (PDF)
Hard x rays come along with a variety of extraordinary properties which make them an excellent probe for investigation in science, technology and medicine. Their large attenuation length in matter opens up the possibility to use hard x-rays for non-destructive investigation of the inner structure of specimens. Medical radiography is one important example of exploiting this feature. Since their discovery by W. C. Röntgen in 1895, a large variety of x-ray analytical techniques have been developed and successfully applied, such as x-ray crystallography, reflectometry, fluorescence spectroscopy, x-ray absorption spectroscopy, small angle x-ray scattering, and many more. Each of those methods reveals information about certain physical properties, but usually, these properties are an average over the complete sample region illuminated by the x rays. In order to obtain the spatial distribution of those properties in inhomogeneous samples, scanning microscopy techniques have to be applied, screening the sample with a small x-ray beam. The spatial resolution is limited by the finite size of the beam. The availability of highly brilliant x-ray sources at third generation synchrotron radiation facilities together with the development of enhanced focusing x-ray optics made it possible to generate increasingly small high intense x-ray beams, pushing the spatial resolution down to the sub-100 nm range. During this thesis the prototype of a hard x-ray scanning microscope utilizing microstructured nanofocusing lenses was designed, built, and successfully tested. The nanofocusing x-ray lenses were developed by our research group of the Institute of Structural Physics at the Technische Universität Dresden. The prototype instrument was installed at the ESRF beamline ID 13. A wide range of experiments like fluorescence element mapping, fluorescence tomography, x-ray nano-diffraction, coherent x-ray diffraction imaging, and x-ray ptychography were performed as part of this thesis. The hard x-ray scanning microscope provides a stable x-ray beam with a full width at half maximum size of 50-100 nm near the focal plane. The nanoprobe was also used for characterization of nanofocusing lenses, crucial to further improve them. Based on the experiences with the prototype, an advanced version of a hard x-ray scanning microscope is under development and will be installed at the PETRA III beamline P06 dedicated as a user instrument for scanning microscopy. This document is organized as follows. A short introduction motivating the necessity for building a hard x-ray scanning microscope is followed by a brief review of the fundamentals of hard x-ray physics with an emphasis on free-space propagation and interaction with matter. After a discussion of the requirements on the x-ray source for the nanoprobe, the main features of synchrotron radiation from an undulator source are shown. The properties of the nanobeam generated by refractive x-ray lenses are treated as well as a two-stage focusing scheme for tailoring size, flux and the lateral coherence properties of the x-ray focus. The design and realization of the microscope setup is addressed, and a selection of experiments performed with the prototype version is presented, before this thesis is finished with a conclusion and an outlook on prospective plans for an improved microscope setup to be installed at PETRA III. / Aufgrund ihrer hervorragenden Eigenschaften kommt harte Röntgenstrahlung in vielfältiger Weise in der Wissenschaft, Industrie und Medizin zum Einsatz. Vor allem die Fähigkeit, makroskopische Gegenstände zu durchdringen, eröffnet die Möglichkeit, im Innern ausgedehnter Objekte verborgene Strukturen zum Vorschein zu bringen, ohne den Gegenstand zerstören zu müssen. Eine Vielzahl röntgenanalytischer Verfahren wie zum Beispiel Kristallographie, Reflektometrie, Fluoreszenzspektroskopie, Absorptionsspektroskopie oder Kleinwinkelstreuung sind entwickelt und erfolgreich angewendet worden. Jede dieser Methoden liefert gewisse strukturelle, chemische oder physikalische Eigenschaften der Probe zutage, allerdings gemittelt über den von der Röntgenstrahlung beleuchteten Bereich. Um eine ortsaufgelöste Verteilung der durch die Röntgenanalyse gewonnenen Information zu erhalten, bedarf es eines sogenannten Mikrostrahls, durch den die Probe lokal abgetastet werden kann. Die dadurch erreichbare räumliche Auflösung ist durch die Größe des Mikrostrahls begrenzt. Aufgrund der Verfügbarkeit hinreichend brillanter Röntgenquellen in Form von Undulatoren an Synchrotronstrahlungseinrichtungen und des Vorhandenseins verbesserter Röntgenoptiken ist es in den vergangen Jahren gelungen, immer kleinere intensive Röntgenfokusse zu erzeugen und somit das räumliche Auflösungsvermögen der Röntgenrastermikroskope auf unter 100 nm zu verbessern. Gegenstand dieser Arbeit ist der Prototyp eines Rastersondenmikroskops für harte Röntgenstrahlung unter Verwendung refraktiver nanofokussierender Röntgenlinsen, die von unserer Arbeitsgruppe am Institut für Strukturphysik entwickelt und hergestellt werden. Das Rastersondenmikroskop wurde im Rahmen dieser Promotion in Dresden konzipiert und gebaut sowie am Strahlrohr ID 13 des ESRF installiert und erfolgreich getestet. Das Gerät stellt einen hochintensiven Röntgenfokus der Größe 50-100 nm zur Verfügung, mit dem im Verlaufe dieser Doktorarbeit zahlreiche Experimente wie Fluoreszenztomographie, Röntgennanobeugung, Abbildung mittels kohärenter Röntgenbeugung sowie Röntgenptychographie erfolgreich durchgeführt wurden. Das Rastermikroskop dient unter anderem auch dem Charakterisieren der nanofokussierenden Linsen, wobei die dadurch gewonnenen Erkenntnisse in die Herstellung verbesserten Linsen einfließen. Diese Arbeit ist wie folgt strukturiert. Ein kurzes einleitendes Kapitel dient als Motivation für den Bau eines Rastersondenmikroskops für harte Röntgenstrahlung. Es folgt eine Einführung in die Grundlagen der Röntgenphysik mit Hauptaugenmerk auf die Ausbreitung von Röntgenstrahlung im Raum und die Wechselwirkungsmechanismen von Röntgenstrahlung mit Materie. Anschließend werden die Anforderungen an die Röntgenquelle besprochen und die Vorzüge eines Undulators herausgestellt. Wichtige Eigenschaften eines mittels refraktiver Röntgenlinsen erzeugten Röntgenfokus werden behandelt, und das Konzept einer Vorfokussierung zur gezielten Anpassung der transversalen Kohärenzeigenschaften an die Erfordernisse des Experiments wird besprochen. Das Design und die technische Realisierung des Rastermikroskops werden ebenso dargestellt wie eine Auswahl erfolgreicher Experimente, die am Gerät vollzogen wurden. Die Arbeit endet mit einem Ausblick, der mögliche Weiterentwicklungen in Aussicht stellt, unter anderem den Aufbau eines verbesserten Rastermikroskops am PETRA III-Strahlrohr P06.

Page generated in 0.4272 seconds