• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Elementsensitive Bildgebung - Einsatz chromatischer Pixelarrays in Röntgen nano-CT / Element sensitive imaging - Use of chromatic pixel arrays in X-ray nano-CT

Lutter, Fabian January 2023 (has links) (PDF)
Diese Arbeit befasst sich mit der Weiterentwicklung und Charakterisierung des XRM-II nanoCT Systems, sowie dessen Möglichkeiten zur Materialtrennung und Elementbestimmung in der nano-Computertomographie. Beim XRM-II nanoCT System handelt es sich um ein Röntgenmikroskop, welches in ein Rasterelektronenmikroskop integriert ist, und auf dem Prinzip der geometrischen Vergrößerung basiert. Neben zweidimensionalen Durchstrahlungsbildern ist dieses Mikroskop auch zur dreidimensionalen Bildgebung mittels Computertomographie fähig. Der Ausgangspunkt für die Weiterentwicklung ist das XRM-II, mit welchem bereits Computertomographien im Nanometerbereich möglich waren. Deren Aufnahmedauer liegt zwischen 14 und 21 Tagen, was das System trotz seiner hohen Auflösung wenig praktikabel macht. Durch eine Anpassung der Blendeneinstellungen am Rasterelektronenmikroskop konnte der Strahlstrom um den Faktor 40 erhöht und damit die Aufnahmedauer auf 24 Stunden reduziert werden, wobei weiterhin eine zweidimensionale Auflösung von \(167 \pm 9\) nm erreicht wird. Durch die Trennung von Objekt- und Targetmanipulator lassen sich beide unabhängig und genauer bewegen, wodurch es möglich ist selbst 50 nm große Strukturen abzubilden. Die Charakterisierung erfolgt sowohl für das komplette System als auch getrennt in die entscheidenden Komponenten wie Target und Detektor. Für das Röntgentarget werden Monte-Carlo Simulationen zur Brennfleckgröße, welche entscheidend für die erreichbare Auflösung ist, durchgeführt und mit Auflösungstests verglichen. Der Röntgendetektor wird hinsichtlich seiner spektralen Auflösung überprüft, welche hauptsächlich vom Charge Sharing Effekt beeinflusst wird. Die Charakterisierung des Gesamtsystems erfolgt durch den Vergleich mit einer höher auflösenden Bildgebungsmethode, der FIB Tomographie. Hierbei wird die gleiche Probe, ein Bruchstück einer CPU, mit beiden Methoden unter der Voraussetzung einer ähnlichen Aufnahmezeit (24 h) untersucht. In der nano-CT kann ein 12 mal größeres Volumen analysiert werden, was jedoch eine geringere räumliche Auflösung als die FIB Tomographie mit sich bringt. Da die spektrale Auflösung des Detektors aufgrund des Charge Sharing begrenzt ist, lassen sich nur Materialien mit einem großen Unterschied in der Ordnungszahl mittels der Energieschwellen des Detektors trennen. Jedoch kann in Verbindung mit der geeigneten Wahl des Targetmaterials der Absorptionskontrast für leichte Materialien, wie beispielsweise \(SiO_2\) verbessert werden. Darüber hinaus ist es am XRM-II nanoCT möglich, durch das integrierte EDX-System, Elemente in der Computertomographie zu identifizieren. Dies wird anhand eines Drei-Wegekatalysators und eines NCA-Partikel gezeigt. / The general topic of this thesis is the development and characterization of the XRM-II nanoCT system, as well as its possibilities for material separation in nano-computed tomographay. The XRM-II nanoCT system is an X-ray microscope integrated into a scanning electron microscope and is based on the principle of geometric magnification. In addition to two-dimensional radiographs, this system is also capable of three-dimensional imaging by using computed tomography. The starting point for the development is the XRM-II system, which is already capable of performing computed tomography in the nanometer range. The acquisition time is between 14 and 21 days, which is the reason why this system is impractical despite its high resolution. By adjusting the aperture settings on the scanning electron microscope, the beam current could be increased by a factor of 40, reducing the acquisition time to 24 hours, while the achievable resolution is still at \(167 \pm 9\) nm. By separating the object and target manipulator, their movement becomes independent and more precisely, resulting in the possibility of resolving even 50 nm sized structures. The characterization is done both for the complete system and separately for the decisive components such as target and detector. Monte Carlo simulations of the focal spot size, which is crucial for the achievable resolution, are performed for the X-ray target and are compared to resolution tests. The spectral resolution of the X-ray detector is checked, which is mainly influenced by the charge sharing effect. The complete system is characterized by the comparison of it to a higher resolving imaging method, the FIB Tomography. The exact same sample, a fragment of a CPU, is analyzed with both imaging methods under the restriction of a similar measurement time (24 h). In the nano-CT the examined volume is 12 times larger than in the FIB tomography, resulting in a lower spatial resolution. Since the spectral resolution of the detector is mainly limited by charge sharing, only materials with a large difference in atomic number can be separated using the detector's energy thresholds. In connection with an appropriate choice of target material, the absorption contrast for light materials such as \(SiO_2\) can be improved. Furthermore, it is possible to identify elements in the computed tomography on the XRM-II nanoCT system using the integrated EDX system. This is demonstrated on a three-way catalytic converter and on a NCA particle.
2

Entwicklung einer hochauflösenden Kamera für die Mikroskopie mit harter Röntgenstrahlung / Development of a high-resolution x-ray camera for tomography with hard x rays

Patommel, Jens 20 January 2011 (has links) (PDF)
Seit mit den Synchrotronstrahlungsquellen dritter Generation hochbrillante Röntgenquellen zur Verfügung stehen, haben sich Vollfeldmikroskopie und Rastersondenmikroskopie mit harter Röntgenstrahlung als besonders nützliche Untersuchungsmethoden etabliert. Insbesondere bei der vergrößernden Mikroskopie mit harter Röntgenstrahlung werden Röntgenkameras mit hoher Anforderung bezüglich der Ortsauflösung benötigt. Im Rahmen dieser Diplomarbeit wurde ein zweidimensionaler Röntgendetektor für die Mikroskopie mit harter Röntgenstrahlung entworfen, gebaut und im Experiment getestet und charakterisiert. Hauptaugenmerk war dabei ein möglichst hohes Ortsauflösungsvermögen des Detektors verbunden mit einem großen effektiven dynamischen Bereich. Als vielversprechendes Konzept erwies sich dabei die Verwendung eines einkristallinen Szintillators, der mittels einer Mikroskopoptik auf einen CCD-Chip abgebildet wird. Im Experiment stellte sich heraus, dass der im Zuge dieser Diplomarbeit konzipierte Flächendetektor sämtliche an ihn gestellten Anforderungen hervorragend erfüllt. Obwohl ursprünglich für die vergrößernde Tomographie mit harter Röntgenstrahlung entwickelt, findet die Röntgenkamera darüber hinaus beim Justieren nanofokussierender refraktiver Röntgenlinsen in Rastersondenmikroskopen Verwendung. / With the advent of highly-brilliant third generation synchrotron radiation sources, hard x-ray full-field microscopy and hard x-ray scanning microscopy were developed and have been shown to be excellent methods for scientific investigations. Especially for magnified hard x-ray full-field microscopy, there is the need for two-dimensional x-ray detectors with highest demands on spatial resolution and effective dynamic range. In the course of this diploma thesis, such an area x-ray detector with high spatial resolution and large dynamic range was designed and built and then tested and characterized in experiment. The high-resolution x-ray camera consists of a visible light microscope which images the sensitive layer of a single-crystal scintillator on the CCD chip of a CCD camera. A test experiment gave evidence that the x-ray camera actually fulfills all the requirements with regard to spatial resolution, sensitivity and effective dynamic range. Originally, the detector was developed for magnified hard x-ray tomography, but in addition, it is applied for alignment purposes of nanofocusing refractive x-ray lenses in a hard x-ray scanning microscope.
3

Study of macroscopic and microscopic homogeneity of DEPFET X-ray detectors / Untersuchung der makroskopischen und mikroskopischen Homogenität von DEPFET-Röntgendetektoren

Bergbauer, Bettina 15 January 2016 (has links) (PDF)
For the X-ray astronomy project Advanced Telescope for High ENergy Astrophysics (Athena) wafer-scale DEpleted P-channel Field Effect Transistor (DEPFET) detectors are proposed as Focal Plane Array (FPA) for the Wide Field Imager (WFI). Prototype structures with different pixel layouts, each consisting of 64 x 64 pixels, were fabricated to study four different DEPFET designs. This thesis reports on the results of the electrical and spectroscopic characterization of the different DEPFET designs. With the electrical qualification measurements the transistor properties of the DEPFET structures are investigated in order to determine whether the design intentions are reflected in the transistor characteristics. In addition, yield and homogeneity of the prototypes can be studied on die, wafer and batch level for further improvement of the production technology with regard to wafer-scale devices. These electrical characterization measurements prove to be a reliable tool to preselect the best detector dies for further integration into full detector systems. The spectroscopic measurements test the dynamic behavior of the designs as well as their spectroscopic performance. In addition, it is revealed how the transistor behavior translates into the detector performance. This thesis, as the first systematic study of different DEPFET designs on die and detector level, shows the limitations of the current DEPFET assessment methods. Thus, it suggests a new concise characterization procedure for DEPFET detectors as well as guidelines for expanded testing in order to increase the general knowledge of the DEPFET. With this study of four different DEPFET variants not only designs suitable for Athena mission have been found but also improvement impulses for the starting wafer-scale device production are provided.
4

Study of macroscopic and microscopic homogeneity of DEPFET X-ray detectors

Bergbauer, Bettina 17 December 2015 (has links)
For the X-ray astronomy project Advanced Telescope for High ENergy Astrophysics (Athena) wafer-scale DEpleted P-channel Field Effect Transistor (DEPFET) detectors are proposed as Focal Plane Array (FPA) for the Wide Field Imager (WFI). Prototype structures with different pixel layouts, each consisting of 64 x 64 pixels, were fabricated to study four different DEPFET designs. This thesis reports on the results of the electrical and spectroscopic characterization of the different DEPFET designs. With the electrical qualification measurements the transistor properties of the DEPFET structures are investigated in order to determine whether the design intentions are reflected in the transistor characteristics. In addition, yield and homogeneity of the prototypes can be studied on die, wafer and batch level for further improvement of the production technology with regard to wafer-scale devices. These electrical characterization measurements prove to be a reliable tool to preselect the best detector dies for further integration into full detector systems. The spectroscopic measurements test the dynamic behavior of the designs as well as their spectroscopic performance. In addition, it is revealed how the transistor behavior translates into the detector performance. This thesis, as the first systematic study of different DEPFET designs on die and detector level, shows the limitations of the current DEPFET assessment methods. Thus, it suggests a new concise characterization procedure for DEPFET detectors as well as guidelines for expanded testing in order to increase the general knowledge of the DEPFET. With this study of four different DEPFET variants not only designs suitable for Athena mission have been found but also improvement impulses for the starting wafer-scale device production are provided.
5

Entwicklung einer hochauflösenden Kamera für die Mikroskopie mit harter Röntgenstrahlung

Patommel, Jens 17 November 2003 (has links)
Seit mit den Synchrotronstrahlungsquellen dritter Generation hochbrillante Röntgenquellen zur Verfügung stehen, haben sich Vollfeldmikroskopie und Rastersondenmikroskopie mit harter Röntgenstrahlung als besonders nützliche Untersuchungsmethoden etabliert. Insbesondere bei der vergrößernden Mikroskopie mit harter Röntgenstrahlung werden Röntgenkameras mit hoher Anforderung bezüglich der Ortsauflösung benötigt. Im Rahmen dieser Diplomarbeit wurde ein zweidimensionaler Röntgendetektor für die Mikroskopie mit harter Röntgenstrahlung entworfen, gebaut und im Experiment getestet und charakterisiert. Hauptaugenmerk war dabei ein möglichst hohes Ortsauflösungsvermögen des Detektors verbunden mit einem großen effektiven dynamischen Bereich. Als vielversprechendes Konzept erwies sich dabei die Verwendung eines einkristallinen Szintillators, der mittels einer Mikroskopoptik auf einen CCD-Chip abgebildet wird. Im Experiment stellte sich heraus, dass der im Zuge dieser Diplomarbeit konzipierte Flächendetektor sämtliche an ihn gestellten Anforderungen hervorragend erfüllt. Obwohl ursprünglich für die vergrößernde Tomographie mit harter Röntgenstrahlung entwickelt, findet die Röntgenkamera darüber hinaus beim Justieren nanofokussierender refraktiver Röntgenlinsen in Rastersondenmikroskopen Verwendung.:1 Einleitung . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Das Erzeugen von Röntgenstrahlung . . . . . . . . . . . . 3 2.1 Röntgenröhren . . . . . . . . . . . . . . . . . . . . . 3 2.2 Synchrotronstrahlung . . . . . . . . . . . . . . . . . . 6 2.3 Sonstige Röntgenquellen . . . . . . . . . . . . . . . . 10 3 Röntgendetektoren . . . . . . . . . . . . . . . . . . . . 11 3.1 Gasionisationsdetektoren . . . . . . . . . . . . . . . . 11 3.2 Halbleiterdetektoren . . . . . . . . . . . . . . . . . . 13 3.3 Szintillationsdetektoren . . . . . . . . . . . . . . . . 16 3.4 Röntgenfilme . . . . . . . . . . . . . . . . . . . . . . 17 3.5 Bildplatten . . . . . . . . . . . . . . . . . . . . . . 18 3.6 CCD-Detektoren . . . . . . . . . . . . . . . . . . . . . 20 3.6.1 Funktionsweise eines CCD-Chips . . . . . . . . . . . . 20 3.6.2 Direkte CCD-Detektoren . . . . . . . . . . . . . . . . 24 3.6.3 CCD-Detektoren mit Faseroptiken . . . . . . . . . . . 25 3.6.4 CCD-Detektoren mit Linsenoptiken . . . . . . . . . . . 26 4 Abbilden mit Röntgenstrahlung . . . . . . . . . . . . . . 29 4.1 Transmission von Röntgenstrahlung durch eine Probe . . . 30 4.2 Detektormittelwert . . . . . . . . . . . . . . . . . . . 34 4.3 Absorptionskontrast . . . . . .. . . . . . . . . . . . . 35 4.4 Beugung und Propagation . . . . . . . . . . . . . . . . 36 4.5 Korrelation und wechselseitige Intensität . . . . . . . 38 4.6 Das Theorem von Van Cittert und Zernike . . . . . . . . 41 4.7 Projektionsabbildung . . . . . . . . . . . . . . . . . . 42 4.8 Das Röntgenmikroskop . . . . . . . . . . . . . . . . . . 43 5 Hochauflösende Röntgenkamera . . . . . . . . . . . . . . . 45 5.1 Anforderungen an den Detektor . . . . . . . . . . . . . 45 5.2 Szintillator . . . . . . . . . . . . . . . . . . . . . . 46 5.3 Mikroskop . . . . . . . . . . . . . . . . . . . . . . . 53 5.4 CCD-Kamera . . . . . . . . . . . . . . . . . . . . . . . 55 6 Charakterisierung des Detektors . . . . . . . . . . . . . 61 6.1 Versuchsaufbau . . . . . . . . . . . . . . . . . . . . . 61 6.2 Auswertung . . . . . . . . . . . . . . . . . . . . . . . 63 6.3 Nickel-Gitter . . . . . . . . . . . . . . . . . . . . . 64 6.4 Goldstreifen . . . . . . . . . . . . . . . . . . . . . . 71 6.5 Mikroprozessor . . . . . . . . . . . . . . . . . . . . . 75 6.6 Einfluss der Quellgröße . . . . . . . . . . . . . . . . . 79 7 Zusammenfassung und Ausblick . . . . . . . . . . . . . . . 81 Literaturverzeichnis . . . . . . . . . . . . . . . . . . . . 85 Abbildungsverzeichnis . . . . . . . . . . . . . . . . . . . 89 Tabellenverzeichnis . . . . . . . . . . . . . . . . . . . . 91 Danksagung . . . . . . . . . . . . . . . . . . . . . . . . . 93 / With the advent of highly-brilliant third generation synchrotron radiation sources, hard x-ray full-field microscopy and hard x-ray scanning microscopy were developed and have been shown to be excellent methods for scientific investigations. Especially for magnified hard x-ray full-field microscopy, there is the need for two-dimensional x-ray detectors with highest demands on spatial resolution and effective dynamic range. In the course of this diploma thesis, such an area x-ray detector with high spatial resolution and large dynamic range was designed and built and then tested and characterized in experiment. The high-resolution x-ray camera consists of a visible light microscope which images the sensitive layer of a single-crystal scintillator on the CCD chip of a CCD camera. A test experiment gave evidence that the x-ray camera actually fulfills all the requirements with regard to spatial resolution, sensitivity and effective dynamic range. Originally, the detector was developed for magnified hard x-ray tomography, but in addition, it is applied for alignment purposes of nanofocusing refractive x-ray lenses in a hard x-ray scanning microscope.:1 Einleitung . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Das Erzeugen von Röntgenstrahlung . . . . . . . . . . . . 3 2.1 Röntgenröhren . . . . . . . . . . . . . . . . . . . . . 3 2.2 Synchrotronstrahlung . . . . . . . . . . . . . . . . . . 6 2.3 Sonstige Röntgenquellen . . . . . . . . . . . . . . . . 10 3 Röntgendetektoren . . . . . . . . . . . . . . . . . . . . 11 3.1 Gasionisationsdetektoren . . . . . . . . . . . . . . . . 11 3.2 Halbleiterdetektoren . . . . . . . . . . . . . . . . . . 13 3.3 Szintillationsdetektoren . . . . . . . . . . . . . . . . 16 3.4 Röntgenfilme . . . . . . . . . . . . . . . . . . . . . . 17 3.5 Bildplatten . . . . . . . . . . . . . . . . . . . . . . 18 3.6 CCD-Detektoren . . . . . . . . . . . . . . . . . . . . . 20 3.6.1 Funktionsweise eines CCD-Chips . . . . . . . . . . . . 20 3.6.2 Direkte CCD-Detektoren . . . . . . . . . . . . . . . . 24 3.6.3 CCD-Detektoren mit Faseroptiken . . . . . . . . . . . 25 3.6.4 CCD-Detektoren mit Linsenoptiken . . . . . . . . . . . 26 4 Abbilden mit Röntgenstrahlung . . . . . . . . . . . . . . 29 4.1 Transmission von Röntgenstrahlung durch eine Probe . . . 30 4.2 Detektormittelwert . . . . . . . . . . . . . . . . . . . 34 4.3 Absorptionskontrast . . . . . .. . . . . . . . . . . . . 35 4.4 Beugung und Propagation . . . . . . . . . . . . . . . . 36 4.5 Korrelation und wechselseitige Intensität . . . . . . . 38 4.6 Das Theorem von Van Cittert und Zernike . . . . . . . . 41 4.7 Projektionsabbildung . . . . . . . . . . . . . . . . . . 42 4.8 Das Röntgenmikroskop . . . . . . . . . . . . . . . . . . 43 5 Hochauflösende Röntgenkamera . . . . . . . . . . . . . . . 45 5.1 Anforderungen an den Detektor . . . . . . . . . . . . . 45 5.2 Szintillator . . . . . . . . . . . . . . . . . . . . . . 46 5.3 Mikroskop . . . . . . . . . . . . . . . . . . . . . . . 53 5.4 CCD-Kamera . . . . . . . . . . . . . . . . . . . . . . . 55 6 Charakterisierung des Detektors . . . . . . . . . . . . . 61 6.1 Versuchsaufbau . . . . . . . . . . . . . . . . . . . . . 61 6.2 Auswertung . . . . . . . . . . . . . . . . . . . . . . . 63 6.3 Nickel-Gitter . . . . . . . . . . . . . . . . . . . . . 64 6.4 Goldstreifen . . . . . . . . . . . . . . . . . . . . . . 71 6.5 Mikroprozessor . . . . . . . . . . . . . . . . . . . . . 75 6.6 Einfluss der Quellgröße . . . . . . . . . . . . . . . . . 79 7 Zusammenfassung und Ausblick . . . . . . . . . . . . . . . 81 Literaturverzeichnis . . . . . . . . . . . . . . . . . . . . 85 Abbildungsverzeichnis . . . . . . . . . . . . . . . . . . . 89 Tabellenverzeichnis . . . . . . . . . . . . . . . . . . . . 91 Danksagung . . . . . . . . . . . . . . . . . . . . . . . . . 93
6

Hard X-Ray Scanning Microscope Using Nanofocusing Parabolic Refractive Lenses / Rastersondenmikroskopie mit harter Röntgenstrahlung

Patommel, Jens 08 March 2011 (has links) (PDF)
Hard x rays come along with a variety of extraordinary properties which make them an excellent probe for investigation in science, technology and medicine. Their large attenuation length in matter opens up the possibility to use hard x-rays for non-destructive investigation of the inner structure of specimens. Medical radiography is one important example of exploiting this feature. Since their discovery by W. C. Röntgen in 1895, a large variety of x-ray analytical techniques have been developed and successfully applied, such as x-ray crystallography, reflectometry, fluorescence spectroscopy, x-ray absorption spectroscopy, small angle x-ray scattering, and many more. Each of those methods reveals information about certain physical properties, but usually, these properties are an average over the complete sample region illuminated by the x rays. In order to obtain the spatial distribution of those properties in inhomogeneous samples, scanning microscopy techniques have to be applied, screening the sample with a small x-ray beam. The spatial resolution is limited by the finite size of the beam. The availability of highly brilliant x-ray sources at third generation synchrotron radiation facilities together with the development of enhanced focusing x-ray optics made it possible to generate increasingly small high intense x-ray beams, pushing the spatial resolution down to the sub-100 nm range. During this thesis the prototype of a hard x-ray scanning microscope utilizing microstructured nanofocusing lenses was designed, built, and successfully tested. The nanofocusing x-ray lenses were developed by our research group of the Institute of Structural Physics at the Technische Universität Dresden. The prototype instrument was installed at the ESRF beamline ID 13. A wide range of experiments like fluorescence element mapping, fluorescence tomography, x-ray nano-diffraction, coherent x-ray diffraction imaging, and x-ray ptychography were performed as part of this thesis. The hard x-ray scanning microscope provides a stable x-ray beam with a full width at half maximum size of 50-100 nm near the focal plane. The nanoprobe was also used for characterization of nanofocusing lenses, crucial to further improve them. Based on the experiences with the prototype, an advanced version of a hard x-ray scanning microscope is under development and will be installed at the PETRA III beamline P06 dedicated as a user instrument for scanning microscopy. This document is organized as follows. A short introduction motivating the necessity for building a hard x-ray scanning microscope is followed by a brief review of the fundamentals of hard x-ray physics with an emphasis on free-space propagation and interaction with matter. After a discussion of the requirements on the x-ray source for the nanoprobe, the main features of synchrotron radiation from an undulator source are shown. The properties of the nanobeam generated by refractive x-ray lenses are treated as well as a two-stage focusing scheme for tailoring size, flux and the lateral coherence properties of the x-ray focus. The design and realization of the microscope setup is addressed, and a selection of experiments performed with the prototype version is presented, before this thesis is finished with a conclusion and an outlook on prospective plans for an improved microscope setup to be installed at PETRA III. / Aufgrund ihrer hervorragenden Eigenschaften kommt harte Röntgenstrahlung in vielfältiger Weise in der Wissenschaft, Industrie und Medizin zum Einsatz. Vor allem die Fähigkeit, makroskopische Gegenstände zu durchdringen, eröffnet die Möglichkeit, im Innern ausgedehnter Objekte verborgene Strukturen zum Vorschein zu bringen, ohne den Gegenstand zerstören zu müssen. Eine Vielzahl röntgenanalytischer Verfahren wie zum Beispiel Kristallographie, Reflektometrie, Fluoreszenzspektroskopie, Absorptionsspektroskopie oder Kleinwinkelstreuung sind entwickelt und erfolgreich angewendet worden. Jede dieser Methoden liefert gewisse strukturelle, chemische oder physikalische Eigenschaften der Probe zutage, allerdings gemittelt über den von der Röntgenstrahlung beleuchteten Bereich. Um eine ortsaufgelöste Verteilung der durch die Röntgenanalyse gewonnenen Information zu erhalten, bedarf es eines sogenannten Mikrostrahls, durch den die Probe lokal abgetastet werden kann. Die dadurch erreichbare räumliche Auflösung ist durch die Größe des Mikrostrahls begrenzt. Aufgrund der Verfügbarkeit hinreichend brillanter Röntgenquellen in Form von Undulatoren an Synchrotronstrahlungseinrichtungen und des Vorhandenseins verbesserter Röntgenoptiken ist es in den vergangen Jahren gelungen, immer kleinere intensive Röntgenfokusse zu erzeugen und somit das räumliche Auflösungsvermögen der Röntgenrastermikroskope auf unter 100 nm zu verbessern. Gegenstand dieser Arbeit ist der Prototyp eines Rastersondenmikroskops für harte Röntgenstrahlung unter Verwendung refraktiver nanofokussierender Röntgenlinsen, die von unserer Arbeitsgruppe am Institut für Strukturphysik entwickelt und hergestellt werden. Das Rastersondenmikroskop wurde im Rahmen dieser Promotion in Dresden konzipiert und gebaut sowie am Strahlrohr ID 13 des ESRF installiert und erfolgreich getestet. Das Gerät stellt einen hochintensiven Röntgenfokus der Größe 50-100 nm zur Verfügung, mit dem im Verlaufe dieser Doktorarbeit zahlreiche Experimente wie Fluoreszenztomographie, Röntgennanobeugung, Abbildung mittels kohärenter Röntgenbeugung sowie Röntgenptychographie erfolgreich durchgeführt wurden. Das Rastermikroskop dient unter anderem auch dem Charakterisieren der nanofokussierenden Linsen, wobei die dadurch gewonnenen Erkenntnisse in die Herstellung verbesserten Linsen einfließen. Diese Arbeit ist wie folgt strukturiert. Ein kurzes einleitendes Kapitel dient als Motivation für den Bau eines Rastersondenmikroskops für harte Röntgenstrahlung. Es folgt eine Einführung in die Grundlagen der Röntgenphysik mit Hauptaugenmerk auf die Ausbreitung von Röntgenstrahlung im Raum und die Wechselwirkungsmechanismen von Röntgenstrahlung mit Materie. Anschließend werden die Anforderungen an die Röntgenquelle besprochen und die Vorzüge eines Undulators herausgestellt. Wichtige Eigenschaften eines mittels refraktiver Röntgenlinsen erzeugten Röntgenfokus werden behandelt, und das Konzept einer Vorfokussierung zur gezielten Anpassung der transversalen Kohärenzeigenschaften an die Erfordernisse des Experiments wird besprochen. Das Design und die technische Realisierung des Rastermikroskops werden ebenso dargestellt wie eine Auswahl erfolgreicher Experimente, die am Gerät vollzogen wurden. Die Arbeit endet mit einem Ausblick, der mögliche Weiterentwicklungen in Aussicht stellt, unter anderem den Aufbau eines verbesserten Rastermikroskops am PETRA III-Strahlrohr P06.
7

Hard X-Ray Scanning Microscope Using Nanofocusing Parabolic Refractive Lenses

Patommel, Jens 12 November 2010 (has links)
Hard x rays come along with a variety of extraordinary properties which make them an excellent probe for investigation in science, technology and medicine. Their large attenuation length in matter opens up the possibility to use hard x-rays for non-destructive investigation of the inner structure of specimens. Medical radiography is one important example of exploiting this feature. Since their discovery by W. C. Röntgen in 1895, a large variety of x-ray analytical techniques have been developed and successfully applied, such as x-ray crystallography, reflectometry, fluorescence spectroscopy, x-ray absorption spectroscopy, small angle x-ray scattering, and many more. Each of those methods reveals information about certain physical properties, but usually, these properties are an average over the complete sample region illuminated by the x rays. In order to obtain the spatial distribution of those properties in inhomogeneous samples, scanning microscopy techniques have to be applied, screening the sample with a small x-ray beam. The spatial resolution is limited by the finite size of the beam. The availability of highly brilliant x-ray sources at third generation synchrotron radiation facilities together with the development of enhanced focusing x-ray optics made it possible to generate increasingly small high intense x-ray beams, pushing the spatial resolution down to the sub-100 nm range. During this thesis the prototype of a hard x-ray scanning microscope utilizing microstructured nanofocusing lenses was designed, built, and successfully tested. The nanofocusing x-ray lenses were developed by our research group of the Institute of Structural Physics at the Technische Universität Dresden. The prototype instrument was installed at the ESRF beamline ID 13. A wide range of experiments like fluorescence element mapping, fluorescence tomography, x-ray nano-diffraction, coherent x-ray diffraction imaging, and x-ray ptychography were performed as part of this thesis. The hard x-ray scanning microscope provides a stable x-ray beam with a full width at half maximum size of 50-100 nm near the focal plane. The nanoprobe was also used for characterization of nanofocusing lenses, crucial to further improve them. Based on the experiences with the prototype, an advanced version of a hard x-ray scanning microscope is under development and will be installed at the PETRA III beamline P06 dedicated as a user instrument for scanning microscopy. This document is organized as follows. A short introduction motivating the necessity for building a hard x-ray scanning microscope is followed by a brief review of the fundamentals of hard x-ray physics with an emphasis on free-space propagation and interaction with matter. After a discussion of the requirements on the x-ray source for the nanoprobe, the main features of synchrotron radiation from an undulator source are shown. The properties of the nanobeam generated by refractive x-ray lenses are treated as well as a two-stage focusing scheme for tailoring size, flux and the lateral coherence properties of the x-ray focus. The design and realization of the microscope setup is addressed, and a selection of experiments performed with the prototype version is presented, before this thesis is finished with a conclusion and an outlook on prospective plans for an improved microscope setup to be installed at PETRA III.:1 Introduction ............................................... 1 2 Basic Properties of Hard X Rays ............................ 3 2.1 Free Propagation of X Rays ............................... 3 2.1.1 The Helmholtz Equation ................................. 4 2.1.2 Integral Theorem of Helmholtz and Kirchhoff ............ 6 2.1.3 Fresnel-Kirchhoff's Diffraction Formula ................ 8 2.1.4 Fresnel-Kirchhoff Propagation .......................... 11 2.2 Interaction of X Rays with Matter ........................ 13 2.2.1 Complex Index of Refraction ............................ 13 2.2.2 Attenuation ............................................ 15 2.2.3 Refraction ............................................. 18 3 The X-Ray Source ........................................... 21 3.1 Requirements ............................................. 21 3.1.1 Energy and Energy Bandwidth ............................ 21 3.1.2 Source Size and Divergence ............................. 23 3.1.3 Brilliance ............................................. 23 3.2 Synchrotron Radiation .................................... 24 3.3 Layout of a Synchrotron Radiation Facility ............... 27 3.4 Liénard-Wiechert Fields .................................. 29 3.5 Dipole Magnets ........................................... 31 3.6 Insertion Devices ........................................ 36 3.6.1 Multipole Wigglers ..................................... 36 3.6.2 Undulators ............................................. 37 4 X-Ray Optics ............................................... 39 4.1 Refractive X-Ray Lenses .................................. 40 4.2 Compound Parabolic Refractive Lenses (CRLs) .............. 41 4.3 Nanofocusing Lenses (NFLs) ............................... 43 4.4 Adiabatically Focusing Lenses (AFLs) ..................... 45 4.5 Focal Distance ........................................... 46 4.6 Transverse Focus Size .................................... 50 4.7 Beam Caustic ............................................. 52 4.8 Depth of Focus ........................................... 53 4.9 Beam Divergence .......................................... 53 4.10 Chromaticity ............................................ 54 4.11 Transmission and Cross Section .......................... 55 4.12 Transverse Coherence .................................... 56 4.12.1 Mutual Intensity Function ............................. 57 4.12.2 Free Propagation of Mutual Intensity .................. 57 4.12.3 Mutual Intensity In The Focal Plane ................... 58 4.12.4 Diffraction Limited Focus ............................. 59 4.13 Coherent Flux ........................................... 60 4.14 Two-Stage Focusing ...................................... 64 4.14.1 The Prefocusing Parameter ............................. 65 4.14.2 Required Refractive Power ............................. 67 4.14.3 Flux Considerations ................................... 70 4.14.4 Astigmatic Prefocusing ................................ 75 5 Nanoprobe Setup ............................................ 77 5.1 X-Ray Optics ............................................. 78 5.1.1 Nanofocusing Lenses .................................... 79 5.1.2 Entry Slits ............................................ 82 5.1.3 Pinhole ................................................ 82 5.1.4 Additional Shielding ................................... 83 5.1.5 Vacuum and Helium Tubes ................................ 83 5.2 Sample Stages ............................................ 84 5.2.1 High Resolution Scanner ................................ 84 5.2.2 High Precision Rotational Stage ........................ 85 5.2.3 Coarse Linear Stages ................................... 85 5.2.4 Goniometer Head ........................................ 85 5.3 Detectors ................................................ 86 5.3.1 High Resolution X-Ray Camera ........................... 86 5.3.2 Diffraction Cameras .................................... 89 5.3.3 Energy Dispersive Detectors ............................ 91 5.3.4 Photodiodes ............................................ 93 5.4 Control Software ......................................... 94 6 Experiments ................................................ 97 6.1 Lens Alignment ........................................... 97 6.2 Focus Characterization ................................... 99 6.2.1 Knife-Edge Scans ....................................... 100 6.2.2 Far-Field Measurements ................................. 102 6.2.3 X-Ray Ptychography ..................................... 103 6.3 Fluorescence Spectroscopy ................................ 105 6.3.1 Fluorescence Element Mapping ........................... 107 6.3.2 Fluorescence Tomography ................................ 110 6.4 Diffraction Experiments .................................. 111 6.4.1 Microdiffraction on Phase Change Media ................. 112 6.4.2 Microdiffraction on Stranski-Krastanow Islands ......... 113 6.4.3 Coherent X-Ray Diffraction Imaging of Gold Particles ... 115 6.4.4 X-Ray Ptychography of a Nano-Structured Microchip ...... 117 7 Conclusion and Outlook ..................................... 121 Bibliography ................................................. 125 List of Figures .............................................. 139 List of Publications ......................................... 141 Danksagung ................................................... 145 Curriculum Vitae ............................................. 149 Erklärung .................................................... 151 / Aufgrund ihrer hervorragenden Eigenschaften kommt harte Röntgenstrahlung in vielfältiger Weise in der Wissenschaft, Industrie und Medizin zum Einsatz. Vor allem die Fähigkeit, makroskopische Gegenstände zu durchdringen, eröffnet die Möglichkeit, im Innern ausgedehnter Objekte verborgene Strukturen zum Vorschein zu bringen, ohne den Gegenstand zerstören zu müssen. Eine Vielzahl röntgenanalytischer Verfahren wie zum Beispiel Kristallographie, Reflektometrie, Fluoreszenzspektroskopie, Absorptionsspektroskopie oder Kleinwinkelstreuung sind entwickelt und erfolgreich angewendet worden. Jede dieser Methoden liefert gewisse strukturelle, chemische oder physikalische Eigenschaften der Probe zutage, allerdings gemittelt über den von der Röntgenstrahlung beleuchteten Bereich. Um eine ortsaufgelöste Verteilung der durch die Röntgenanalyse gewonnenen Information zu erhalten, bedarf es eines sogenannten Mikrostrahls, durch den die Probe lokal abgetastet werden kann. Die dadurch erreichbare räumliche Auflösung ist durch die Größe des Mikrostrahls begrenzt. Aufgrund der Verfügbarkeit hinreichend brillanter Röntgenquellen in Form von Undulatoren an Synchrotronstrahlungseinrichtungen und des Vorhandenseins verbesserter Röntgenoptiken ist es in den vergangen Jahren gelungen, immer kleinere intensive Röntgenfokusse zu erzeugen und somit das räumliche Auflösungsvermögen der Röntgenrastermikroskope auf unter 100 nm zu verbessern. Gegenstand dieser Arbeit ist der Prototyp eines Rastersondenmikroskops für harte Röntgenstrahlung unter Verwendung refraktiver nanofokussierender Röntgenlinsen, die von unserer Arbeitsgruppe am Institut für Strukturphysik entwickelt und hergestellt werden. Das Rastersondenmikroskop wurde im Rahmen dieser Promotion in Dresden konzipiert und gebaut sowie am Strahlrohr ID 13 des ESRF installiert und erfolgreich getestet. Das Gerät stellt einen hochintensiven Röntgenfokus der Größe 50-100 nm zur Verfügung, mit dem im Verlaufe dieser Doktorarbeit zahlreiche Experimente wie Fluoreszenztomographie, Röntgennanobeugung, Abbildung mittels kohärenter Röntgenbeugung sowie Röntgenptychographie erfolgreich durchgeführt wurden. Das Rastermikroskop dient unter anderem auch dem Charakterisieren der nanofokussierenden Linsen, wobei die dadurch gewonnenen Erkenntnisse in die Herstellung verbesserten Linsen einfließen. Diese Arbeit ist wie folgt strukturiert. Ein kurzes einleitendes Kapitel dient als Motivation für den Bau eines Rastersondenmikroskops für harte Röntgenstrahlung. Es folgt eine Einführung in die Grundlagen der Röntgenphysik mit Hauptaugenmerk auf die Ausbreitung von Röntgenstrahlung im Raum und die Wechselwirkungsmechanismen von Röntgenstrahlung mit Materie. Anschließend werden die Anforderungen an die Röntgenquelle besprochen und die Vorzüge eines Undulators herausgestellt. Wichtige Eigenschaften eines mittels refraktiver Röntgenlinsen erzeugten Röntgenfokus werden behandelt, und das Konzept einer Vorfokussierung zur gezielten Anpassung der transversalen Kohärenzeigenschaften an die Erfordernisse des Experiments wird besprochen. Das Design und die technische Realisierung des Rastermikroskops werden ebenso dargestellt wie eine Auswahl erfolgreicher Experimente, die am Gerät vollzogen wurden. Die Arbeit endet mit einem Ausblick, der mögliche Weiterentwicklungen in Aussicht stellt, unter anderem den Aufbau eines verbesserten Rastermikroskops am PETRA III-Strahlrohr P06.:1 Introduction ............................................... 1 2 Basic Properties of Hard X Rays ............................ 3 2.1 Free Propagation of X Rays ............................... 3 2.1.1 The Helmholtz Equation ................................. 4 2.1.2 Integral Theorem of Helmholtz and Kirchhoff ............ 6 2.1.3 Fresnel-Kirchhoff's Diffraction Formula ................ 8 2.1.4 Fresnel-Kirchhoff Propagation .......................... 11 2.2 Interaction of X Rays with Matter ........................ 13 2.2.1 Complex Index of Refraction ............................ 13 2.2.2 Attenuation ............................................ 15 2.2.3 Refraction ............................................. 18 3 The X-Ray Source ........................................... 21 3.1 Requirements ............................................. 21 3.1.1 Energy and Energy Bandwidth ............................ 21 3.1.2 Source Size and Divergence ............................. 23 3.1.3 Brilliance ............................................. 23 3.2 Synchrotron Radiation .................................... 24 3.3 Layout of a Synchrotron Radiation Facility ............... 27 3.4 Liénard-Wiechert Fields .................................. 29 3.5 Dipole Magnets ........................................... 31 3.6 Insertion Devices ........................................ 36 3.6.1 Multipole Wigglers ..................................... 36 3.6.2 Undulators ............................................. 37 4 X-Ray Optics ............................................... 39 4.1 Refractive X-Ray Lenses .................................. 40 4.2 Compound Parabolic Refractive Lenses (CRLs) .............. 41 4.3 Nanofocusing Lenses (NFLs) ............................... 43 4.4 Adiabatically Focusing Lenses (AFLs) ..................... 45 4.5 Focal Distance ........................................... 46 4.6 Transverse Focus Size .................................... 50 4.7 Beam Caustic ............................................. 52 4.8 Depth of Focus ........................................... 53 4.9 Beam Divergence .......................................... 53 4.10 Chromaticity ............................................ 54 4.11 Transmission and Cross Section .......................... 55 4.12 Transverse Coherence .................................... 56 4.12.1 Mutual Intensity Function ............................. 57 4.12.2 Free Propagation of Mutual Intensity .................. 57 4.12.3 Mutual Intensity In The Focal Plane ................... 58 4.12.4 Diffraction Limited Focus ............................. 59 4.13 Coherent Flux ........................................... 60 4.14 Two-Stage Focusing ...................................... 64 4.14.1 The Prefocusing Parameter ............................. 65 4.14.2 Required Refractive Power ............................. 67 4.14.3 Flux Considerations ................................... 70 4.14.4 Astigmatic Prefocusing ................................ 75 5 Nanoprobe Setup ............................................ 77 5.1 X-Ray Optics ............................................. 78 5.1.1 Nanofocusing Lenses .................................... 79 5.1.2 Entry Slits ............................................ 82 5.1.3 Pinhole ................................................ 82 5.1.4 Additional Shielding ................................... 83 5.1.5 Vacuum and Helium Tubes ................................ 83 5.2 Sample Stages ............................................ 84 5.2.1 High Resolution Scanner ................................ 84 5.2.2 High Precision Rotational Stage ........................ 85 5.2.3 Coarse Linear Stages ................................... 85 5.2.4 Goniometer Head ........................................ 85 5.3 Detectors ................................................ 86 5.3.1 High Resolution X-Ray Camera ........................... 86 5.3.2 Diffraction Cameras .................................... 89 5.3.3 Energy Dispersive Detectors ............................ 91 5.3.4 Photodiodes ............................................ 93 5.4 Control Software ......................................... 94 6 Experiments ................................................ 97 6.1 Lens Alignment ........................................... 97 6.2 Focus Characterization ................................... 99 6.2.1 Knife-Edge Scans ....................................... 100 6.2.2 Far-Field Measurements ................................. 102 6.2.3 X-Ray Ptychography ..................................... 103 6.3 Fluorescence Spectroscopy ................................ 105 6.3.1 Fluorescence Element Mapping ........................... 107 6.3.2 Fluorescence Tomography ................................ 110 6.4 Diffraction Experiments .................................. 111 6.4.1 Microdiffraction on Phase Change Media ................. 112 6.4.2 Microdiffraction on Stranski-Krastanow Islands ......... 113 6.4.3 Coherent X-Ray Diffraction Imaging of Gold Particles ... 115 6.4.4 X-Ray Ptychography of a Nano-Structured Microchip ...... 117 7 Conclusion and Outlook ..................................... 121 Bibliography ................................................. 125 List of Figures .............................................. 139 List of Publications ......................................... 141 Danksagung ................................................... 145 Curriculum Vitae ............................................. 149 Erklärung .................................................... 151

Page generated in 0.0407 seconds