• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanisms and Inhibition of EF-G-dependent Translocation and Recycling of the Bacterial Ribosome

Borg, Anneli January 2015 (has links)
The GTPase elongation factor G (EF-G) is an important player in the complex process of protein synthesis by bacterial ribosomes. Although extensively studied much remains to be learned about this fascinating protein. In the elongation phase, after incorporation of each amino acid into the growing peptide chain, EF-G translocates the ribosome along the mRNA template. In the recycling phase, when the synthesis of a protein has been completed, EF-G, together with ribosome recycling factor (RRF), splits the ribosome into its subunits. We developed the first in vitro assay for measuring the average time of a complete translocation step at any position along the mRNA. Inside the open reading frame, at saturating EF-G concentration and low magnesium ion concentration, translocation rates were fast and compatible with elongation rates observed in vivo. We also determined the complete kinetic mechanism for EF-G- and RRF-dependent splitting of the post-termination ribosome. We showed that splitting occurs only when RRF binds before EF-G and that the rate and GTP consumption of the reaction varies greatly with the factor concentrations. The antibiotic fusidic acid (FA) inhibits bacterial protein synthesis by binding to EF-G when the factor is ribosome bound, during translocation and ribosome recycling. We developed experimental methods and a theoretical framework for analyzing the effect of tight-binding inhibitors like FA on protein synthesis. We found that FA targets three different states during each elongation cycle and that it binds to EF-G on the post-termination ribosome both in the presence and absence of RRF. The stalling time of an FA-inhibited ribosome is about hundred-fold longer than the time of an uninhibited elongation cycle and therefore each binding event has a large impact on the protein synthesis rate and may induce queuing of ribosomes on the mRNA. Although ribosomes in the elongation and the recycling phases are targeted with similar efficiency, we showed that the main effect of FA in vivo is on elongation. Our results may serve as a basis for modelling of EF-G function and FA inhibition inside the living cell and for structure determination of mechanistically important intermediate states in translocation and ribosome recycling.
2

Structural and Biochemical Studies of Antibiotic Resistance and Ribosomal Frameshifting

Chen, Yang January 2013 (has links)
Protein synthesis, translation, performed by the ribosome, is a fundamental process of life and one of the main targets of antibacterial drugs. This thesis provides structural and biochemical understanding of three aspects of bacterial translation. Elongation factor G (EF-G) is the target for the antibiotic fusidic acid (FA). FA binds to EF-G only on the ribosome after GTP hydrolysis and prevents EF-G dissociation from the ribosome. Point mutations in EF-G can lead to FA resistance but are often accompanied by a fitness cost in terms of slower growth of the bacteria. Secondary mutations can compensate for this fitness cost while resistance is maintained. Here we present the crystal structure of the clinical FA drug target, Staphylococcus aureus EF-G, together with the mapping and analysis of all known FA-resistance mutations in EF-G. We also present crystal structures of the FA-resistant mutant F88L, the FA-hypersensitive mutant M16I and the FA-resistant but fitness-compensated double mutant F88L/M16I. Analysis of mutant structures together with biochemical data allowed us to propose that fitness loss and compensation are caused by effects on the conformational dynamics of EF-G on the ribosome. Aminoglycosides are another group of antibiotics that target the decoding region of the 30S ribosomal subunit. Resistance to aminoglycosides can be acquired by inactivation of the drugs via enzymatic modification. Here, we present the first crystal structure an aminoglycoside 3’’ adenyltransferase, AadA from Salmonella enterica. AadA displays two domains and unlike related structures most likely functions as a monomer. Frameshifts are deviations the standard three-base reading frame of translation. -1 frameshifting can be caused by normal tRNASer3 at GCA alanine codons and tRNAThr3 at CCA/CCG proline codons. This process has been proposed to involve doublet decoding using non-standard codon-anticodon interactions. In our study, we showed by equilibrium binding that these tRNAs bind with low micromolar Kd to the frameshift codons. Our results support the doublet-decoding model and show that non-standard anticodon loop structures need to be adopted for the frameshifts to happen. These findings provide new insights in antibiotic resistance and reading-frame maintenance and will contribute to a better understanding of the translation elongation process.
3

Characterizing Elongation of Protein Synthesis and Fusidic Acid Resistance in Bacteria

Koripella, Srihari Nagendra Ravi Kiran January 2013 (has links)
Protein synthesis is a highly complex process executed by the ribosome in coordination with mRNA, tRNAs and translational protein factors. Several antibiotics are known to inhibit bacterial protein synthesis by either targeting the ribosome or the proteins factors involved in translation. Fusidic acid (FA) is a bacteriostatic antibiotic that blocks polypeptide chain elongation by locking elongation factor-G (EF-G) on the ribosome. Mutations in fusA, the gene encoding bacterial EF-G, confer high-level of resistance towards FA.  Antibiotic resistance in bacteria is often associated with fitness loss, which is compensated by acquiring secondary mutations. In order to understand the mechanism of fitness loss and compensation in relation to FA resistance, we have characterized three S. aureus EF-G mutants with fast kinetics and crystal structures. Our results show that, the causes for fitness loss in the FA-resistant mutant F88L are resulting from significantly slower tRNA translocation and ribosome recycling. Analysis of the crystal structures, together with the results from our biochemical studies enabled us to propose that FA-resistant EF-G mutations causing fitness loss and compensation operate by affecting the conformational dynamics of EF-G on the ribosome. EF-G is a G-protein belonging to the GTPase super-family. In all the translational GTPases, a conserved histidine (H92 in E. coli EF-G) residue, located at the apex of switch II in the G-domain is believed to play a crucial role in ribosome-stimulated GTP hydrolysis and inorganic phosphate (Pi) release. Mutagenesis of H92 to alanine (A) and glutamic acid (E) showed different degree of defect in different steps of translation. Compared to wild type (WT) EF-G, mutant H92A showed a 10 fold defect in ribosome mediated GTP hydrolysis whereas the other mutant H92E showed a 100 fold defect. However, both the mutants are equally defective in single round Pi release (100 times slower than WT). When checked for their activity in mRNA translocation, H92A and H92E were 10 times and 100 times slower than WT respectively. Results from our tripeptide formation experiments revealed a 1000 fold defect for both mutants. Altogether, our results indicate that GTP hydrolysis occurs before tRNA translocation, whereas Pi release occurs probably after or independent of the translocation step. Further, our results confirm that, His92 has a vital role residue in ribosome-stimulated GTP hydrolysis and Pi release.
4

The impact of a single nucleotide polymorphism in fusA1 on biofilm formation and virulence in Pseudomonas aeruginosa

Maunders, Eve Alexandra January 2018 (has links)
Pseudomonas aeruginosa is an opportunistic human pathogen that is now the leading cause of morbidity and mortality in immunocompromised individuals. Those suffering with the genetic disease cystic fibrosis (CF) commonly encounter P. aeruginosa infections. P. aeruginosa infection can present itself as an acute infection, which is characterised by highly virulent, "free-swimming" bacteria, or as a chronic infection associated with the formation of surface-adhered bacterial communities known as biofilms. The labyrinth of interconnecting signalling networks has meant that the regulatory mechanisms behind biofilm formation and virulence are largely undefined. In this dissertation, a single nucleotide polymorphism was identified within the gene, fusA1, encoding elongation factor G (EF-G). The mutation introduced minor structural changes to the protein which were likely to have functional repercussions in its involvement in protein synthesis. Phenotypic analysis revealed that the mutation conferred changes in both resistance and sensitivity to various antibiotics, as well as changes in motility, exoenzyme production, quorum sensing, metabolism, synthesis of biofilm-associated proteins and exopolysaccharide production. Most notably was the up-regulation of a major virulence determinant, the type three secretion system, typically characteristic of cells comprising an acute infection. Proteomic and transcriptomic profiling of the mutant strain provided an insight into the genetic basis behind these phenotypes, identifying the up-regulation of multidrug efflux systems and modulations to the chemotactic systems. This study also found links between several biological processes that were modulated in the mutant strain, such as crosstalk between sulfur metabolism, iron uptake and the oxidative stress response. In summary, the work presented in this dissertation highlights the susceptibility of fusA1 to spontaneous mutation and identifies a novel role for EF-G in bacterial virulence and antibiotic sensitivity, both of which have worrying implications for infection within the CF lung.
5

Coupling of GTP hydrolysis by EF-G to tRNA and mRNA translocation through the ribosome

da Cunha, Carlos Eduardo 19 June 2013 (has links)
No description available.
6

Recoding of bacteriophage T4 gene 60 mRNA by programmed translational bypassing

Klimova, Mariia 10 February 2020 (has links)
No description available.

Page generated in 0.0681 seconds