• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • Tagged with
  • 11
  • 11
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

FUNCTIONAL ANALYSIS OF TWO CONSERVED REGIONS OF ESCHERICHIA COLI ELONGATION FACTOR G AS STUDIED BY SITE-DIRECTED MUTAGENESIS

Pereira, Ryan Apolinario 20 December 2002 (has links)
No description available.
2

A Few Strokes to the Family Portrait of Translational GTPases

Hauryliuk, Vasili January 2008 (has links)
<p>Protein biosynthesis is a core process in all living organisms. Assembly of the protein chain from aminoacids is catalysed by the ribosome, ancient and extremely complex macromolecular machine. Several different classes of accessory molecules are involved in translation, and one set of them, called translational GTPases (trGTPases), was in the focus of this work. </p><p>In this thesis properties of two trGTPases– EF-G and eRF3 - were studied by means of direct biochemical experiments. EF-G is a bacterial trGTPase involved in two steps of translation: translocation and ribosomal recycling. Translocation is a process of the ribosomal movement along the mRNA, and recycling as the step when upon completion of the protein ribosome is released from the mRNA via splitting in two ribosomal subunits. We found that off the ribosome EF-G has similar affinities to GDP and GTP, and thus given the predominance of the latter in the cell, EF-G should be present mostly in the complex with GTP. However, binding to the ribosome increases factors affinity to GTP drastically, ensuring that it is in the GTP-bound state. GDP can not promote neither translocation, not recycling, and GDPNP can not promote recycling. It can, however, promote translocation, but in so doing it results in an intermediate ribosomal state and translocation process can be reversed by addition of GDP, which is not the case for the EF-G•GTP-catalyzed reaction.</p><p>The second trGTPase we investigated is eukaryotic termination factor eRF3. This protein together with another factor, eRF1, is involved translation termination, which is release of the synthesized protein from the ribosome. We demonstrateed, that eRF3 alone has basically no propensity to bind GTP and thus resides in the GDP-bound state. Complex formation between eRF1 and eRF3 promotes GTP binding by the latter, resulting in the formation of the ternary complex eRF1•eRF3•GTP, which in turn is catalyzing the termination event.</p><p>Experimental investigations of trGTPases where rationalized within a generalized thermodynamical framework, accommoding the existent experimental observations, both structural and biochemical. </p>
3

The Role of EF-G in Translational Reading Frame Maintenance on the Ribosome

Peng, Bee-Zen 14 September 2018 (has links)
No description available.
4

A Few Strokes to the Family Portrait of Translational GTPases

Hauryliuk, Vasili January 2008 (has links)
Protein biosynthesis is a core process in all living organisms. Assembly of the protein chain from aminoacids is catalysed by the ribosome, ancient and extremely complex macromolecular machine. Several different classes of accessory molecules are involved in translation, and one set of them, called translational GTPases (trGTPases), was in the focus of this work. In this thesis properties of two trGTPases– EF-G and eRF3 - were studied by means of direct biochemical experiments. EF-G is a bacterial trGTPase involved in two steps of translation: translocation and ribosomal recycling. Translocation is a process of the ribosomal movement along the mRNA, and recycling as the step when upon completion of the protein ribosome is released from the mRNA via splitting in two ribosomal subunits. We found that off the ribosome EF-G has similar affinities to GDP and GTP, and thus given the predominance of the latter in the cell, EF-G should be present mostly in the complex with GTP. However, binding to the ribosome increases factors affinity to GTP drastically, ensuring that it is in the GTP-bound state. GDP can not promote neither translocation, not recycling, and GDPNP can not promote recycling. It can, however, promote translocation, but in so doing it results in an intermediate ribosomal state and translocation process can be reversed by addition of GDP, which is not the case for the EF-G•GTP-catalyzed reaction. The second trGTPase we investigated is eukaryotic termination factor eRF3. This protein together with another factor, eRF1, is involved translation termination, which is release of the synthesized protein from the ribosome. We demonstrateed, that eRF3 alone has basically no propensity to bind GTP and thus resides in the GDP-bound state. Complex formation between eRF1 and eRF3 promotes GTP binding by the latter, resulting in the formation of the ternary complex eRF1•eRF3•GTP, which in turn is catalyzing the termination event. Experimental investigations of trGTPases where rationalized within a generalized thermodynamical framework, accommoding the existent experimental observations, both structural and biochemical.
5

Coupling of GTP hydrolysis by EF-G to tRNA and mRNA translocation through the ribosome

da Cunha, Carlos Eduardo 19 June 2013 (has links)
No description available.
6

Kinetics of subunit rotation of the ribosome during tRNA-mRNA translocation

Sharma, Heena 07 November 2016 (has links)
No description available.
7

Multifaceted Mechanism of Amicoumacin A Inhibition of Bacterial Translation

Maksimova, Elena M., Vinogradova, Daria S., Osterman, Ilya A., Kasatsky, Pavel S., Nikonov, Oleg S., Milón, Pohl, Dontsova, Olga A., Sergiev, Petr V., Paleskava, Alena, Konevega, Andrey L. 12 February 2021 (has links)
Amicoumacin A (Ami) halts bacterial growth by inhibiting the ribosome during translation. The Ami binding site locates in the vicinity of the E-site codon of mRNA. However, Ami does not clash with mRNA, rather stabilizes it, which is relatively unusual and implies a unique way of translation inhibition. In this work, we performed a kinetic and thermodynamic investigation of Ami influence on the main steps of polypeptide synthesis. We show that Ami reduces the rate of the functional canonical 70S initiation complex (IC) formation by 30-fold. Additionally, our results indicate that Ami promotes the formation of erroneous 30S ICs; however, IF3 prevents them from progressing towards translation initiation. During early elongation steps, Ami does not compromise EF-Tu-dependent A-site binding or peptide bond formation. On the other hand, Ami reduces the rate of peptidyl-tRNA movement from the A to the P site and significantly decreases the amount of the ribosomes capable of polypeptide synthesis. Our data indicate that Ami progressively decreases the activity of translating ribosomes that may appear to be the main inhibitory mechanism of Ami. Indeed, the use of EF-G mutants that confer resistance to Ami (G542V, G581A, or ins544V) leads to a complete restoration of the ribosome functionality. It is possible that the changes in translocation induced by EF-G mutants compensate for the activity loss caused by Ami. / Russian Foundation for Basic Research / Revisión por pares
8

Functional Studies of Transfer RNA Interactions in the Ribosome

Walker, Sarah Elizabeth 10 September 2008 (has links)
No description available.
9

Le contrôle qualité de la synthèse protéique comme cible pour le développement de nouveaux antibiotiques / Quality control of protein synthesis as a target for developing new antibiotics

Macé, Kévin 24 November 2016 (has links)
Le travail retranscrit dans cette thèse regroupe l'étude de différents processus biologiques impliqués dans la synthèse protéique bactérienne. Dans un premier chapitre, les origines de la synthèse protéique au temps du monde ARN sont traitées en guise d'introduction. Ce travail théorique se poursuit par la présentation d'une structure à haute résolution du facteur d'élongation G (EF-G) en complexe avec le ribosome par cryo-microscopie électronique à transmission (cryo-MET). Grâce aux avancées techniques de la cryo-MET, nous avons observé pour la première fois EF-G lié au ribosome en l'absence de tout inhibiteur. Cet état particulièr d'EF-G permet de visualiser une flexibilité de son doamine III. Cette étude permet aussi de rationaliser le fonctionnement de l'antibiotique acide fusidique. Nous nous sommes ensuite intéressés aux voies de sauvetage de la synthèse protéique et plus particulièrement de la trans-traduction. Ce mécanisme fascinant permet le recyclage des ribosomes bloqués sur un ARN messager défectueux. Cette voie de sauvetage est généralement vitale ou alors indispensable pour la virulence bactérienne. Nous avons réalisé une étude structurale préliminaire de la dégradation de l'ARNm défectueux durant ce processus. Après une revue traitant du sujet, nous présentons une étude de la trans-traduction comme cible pour le développement de nouveaux antibiotiques. Pour cela, nous avons mis au point un système rapporteur avec contrôle interne de l'activité trans-traductionnelle bactérienne. Après avoir mis au point ce système et validé son utilisation, nous l'avons exploité en testant des molécules ciblant la trans-traduction. / The current PhD work brings together various studies linked to bacterial protein synthesis. The first chapter is about the origins of protein synthesis at the time of the RNA world. This theoretical work continues with the presentation of a high-resolution structure of the elongation factor G (EF-G) in complex with the ribosome by cryo-electron transmission microscopy (cryo-TEM). We describe for the first time EF-G bound to the ribosome in the absence of any inhibitor. This particular structure of EF-G displays a yet unseen positioning of its third domain, which becomes very flexible. This study helps to understand the way the antibiotic fusidic acid blocks translation. The work then switches to a study of trans-translation, the main rescuing system of stalled ribosomes in bacteria. Trans-translation is generally vital or at least necessary for bacterial virulence. We conducted a preliminary structural study on the way faulty mRNAs are degraded during this process. This is why we present a study of trans-translation as a target for the development of new antibiotics. For this we developed and validated a reporter system for trans-translation, which is used to screen molecules targeting trans-translation.
10

The Physiological Cost of Antibiotic Resistance

Macvanin, Mirjana January 2003 (has links)
<p>Becoming antibiotic resistant is often associated with fitness costs for the resistant bacteria. This is seen as a loss of competitiveness against the antibiotic-sensitive wild-type in an antibiotic-free environment. In this study, the physiological alterations associated with fitness cost of antibiotic resistance <i>in vitro</i> (in the laboratory medium), and <i>in vivo</i> (in a mouse infection model), are identified in the model system of fusidic acid resistant (Fus<sup>R</sup>) <i>Salmonella</i> <i>enterica</i> serovar Typhimurium.</p><p>Fus<sup>R</sup> mutants have mutations in <i>fusA</i>, the gene that encodes translation elongation factor G (EF-G). Fus<sup>R</sup> EF-G has a slow rate of regeneration of active EF-G·GTP off the ribosome, resulting in a slow rate of protein synthesis. The low fitness of Fus<sup>R</sup> mutants <i>in vitro</i>, and <i>in vivo</i>, can be explained in part by a slow rate of protein synthesis and resulting slow growth. However, some Fus<sup>R</sup> mutants with normal rates of protein synthesis still suffer from reduced fitness <i>in vivo</i>. We observed that Fus<sup>R</sup> mutants have perturbed levels of the global regulatory molecule ppGpp. One consequence of this is an inefficient induction of RpoS, a regulator of general stress reponse and an important virulence factor for <i>Salmonella</i>. In addition, we found that Fus<sup>R</sup> mutants have reduced amounts of heme, a co-factor of catalases and cytochromes. As a consequence of the heme defect, Fus<sup>R</sup> mutants have a reduced ability to withstand oxidative stress and a low rate of aerobic respiration.</p><p>The pleiotropic phenotypes of Fus<sup>R</sup> mutants suggest that antibiotic resistance can be associated with broad changes in bacterial physiology. Knowledge of physiological alterations that reduce the fitness of antibiotic-resistant mutants can be useful in identifying novel targets for antimicrobial agents. Drugs that alter the levels of global transcriptional regulators such as ppGpp or RpoS deserve attention as potential antimicrobial agents. Finally, the observation that Fus<sup>R</sup> mutants have increased sensitivity to several unrelated classes of antibiotics suggests that the identification of physiological cost of resistance can help in optimizing treatment of resistant bacterial populations.</p>

Page generated in 0.0237 seconds